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Optimal decentralized control: Applications and Theory

Internet of Things
Smart Grids

Sensor NetworksSwarm Robotics

Salient features
Multiple decision makers
Access to different information
Cooperate towards a common objective

Series of positive results in the last 10-15 years:
funnel causality, quadratic invariance, common information

approach, and others.

Explicit solutions are rare and typically exist for
systems with two or three agents.



Are there features that are present in the
applications but are missing from the theory?
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System with exchangeable agents

Dynamics 𝐱t+1 = ft(𝐱t, 𝐮t,𝐰t) with per-step cost ct(𝐱t, 𝐮t).

Pair of exchangeable agents Agents i and j are exchangeable if

𝒳i = 𝒳j, 𝒰i = 𝒰j, 𝒲i = 𝒲j.

ft(σij𝐱t, σij𝐮t, σij𝐰t) = σij(ft(𝐱t, 𝐮t,𝐰t))
ct(σij𝐱t, σij𝐮t) = ct(𝐱t, 𝐮t).

Set of exchangeable agents A set of agents is exchangeable if every pair in that set is exchangeable

System with partially
exchangeable agents

. . . is a multi-agent system where the set of agents can be
partitioned into disjoint sets of exchangeable agents.
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Notation

For agent i of sub-
population k

xit ∈ ℝdk
x : state of agent i

ui
t ∈ ℝdk

u : control action of agent i

For sub-population k 𝒩k : set of agents in sub-popln k

x̄kt =
1
|𝒩k| ∑i∈𝒩k

xit : mean-field of states

ūk
t =

1
|𝒩k| ∑i∈𝒩k

ui
t : mean-field of actions

N : number of heterogeneous agents
K : number of subpopulations
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Notation

For the entire population 𝒩 = 𝒩1 ∪ ⋅ ⋅ ⋅ ∪ 𝒩K : set of all agents
𝒦 = {1, . . . , K} : set of all sub-populations

𝐱t = (xit)i∈𝒩 : global state of the system
𝐮t = (ui

t)i∈𝒩 : joint actions of all agents

𝐱̄t = vec(x̄1t , . . . , x̄Kt ) : global mean-field of states
𝐮̄t = vec(ū1

t , . . . , ūK
t ) : global mean-field of actions

N : number of heterogeneous agents
K : number of subpopulations
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Cost
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t=1

[𝐱
⊺
tQt𝐱t + 𝐮⊺

t Rt𝐮t]
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Linear quadratic system with partially exchangeable agents

Dynamics 𝐱t+1 = At𝐱t + Bt𝐮t +𝐰t

Cost
T

∑
t=1

[𝐱
⊺
tQt𝐱t + 𝐮⊺

t Rt𝐮t]

Irrespective of the information structure
such a system is equivalent to a mean-field coupled system

Agent dynamics in
sub-population k

xit+1 = Ak
t xit + Bk

tui
t + Dk

t 𝐱̄t + Ekt 𝐮̄t +wi
t

Cost
T

∑
t=1 [

∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x

i
t)

⊺
Qk

t xit+(ui
t)

⊺
Rktui

t]+ 𝐱̄⊺
t Pxt 𝐱̄t + 𝐮̄⊺

t Put 𝐮̄t ]
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There is a long history of mean-field approximations

Mean-field approximation in statistical physics (Weiss 1907; Landau 1937)

It is a well-known phenomenon in many branches of the exact and physical
sciences that very great numbers are often easier to handle than those of
medium size. An almost exact theory of a gas, containing about 1025 freely
moving particles, is incomparably easier than that of the solar system, made
up of 9 major bodies… This is, of course, due to the excellent possibility of
applying the laws of statistics and probabilities in the first case.

— von Neumann and Morgenstern,
Theory of Games and Economic Behavior (1944) §2.4.2
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There is a long history of mean-field approximations

Mean-field approximation in statistical physics (Weiss 1907; Landau 1937)
. . .

Mean-field approximations in Game Theory
Jovanovic Rosenthal 1988
Bergin Bernhardt 1995
Weintraub Benkard Van Roy 2008
. . .

Mean-field approximations in Systems and Control (Mean-field games)
Huang Caines Malhalmé 2003, . . .
Larsy Lions 2006, . . .
. . .



Our results are different

There is no approximation!
Results are applicable to systems with

arbitrary (not necessarily large)
number of agents
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Main idea: What happens if mean-field is observed?

Mean-field sharing
information structure

Iit = {xi1:t, ui
1:t−1, 𝐱̄1:t}

Is it a restrictive assumption? Not really. Mean-field can be shared using small communication
overhead (using consensus algorithms)
We later provide approx. results when mean-field is not shared.

Not one of the known tractable information structures
Not partially nested (or stochastically nested)
Not quadratic invariant
Not partial history sharing
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1
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(x̆it)⊺Qk
t x̆it+(x̄kt )⊺Qk

t x̄kt ,

where x̆it = xit − x̄kt .
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A surprisingly simple solution . . .

Parallel axis Theorem
1
|𝒩k| ∑i∈𝒩k

(xit)⊺Qk
t xit =

1
|𝒩k| ∑i∈𝒩k

(x̆it)⊺Qk
t x̆it+(x̄kt )⊺Qk

t x̄kt ,

where x̆it = xit − x̄kt .

Decoupled Per-step cost ∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x̆

i
t)

⊺Qk
t x̆it] + 𝐱̄⊺

t (Q̄t + Pxt )𝐱̄t
+ similar u-terms

Noise coupled Dynamics x̆it+1 = Ak
t x̆it + Bk

t ŭi
t + w̆i

t, 𝐱̄t+1 = Ak
t 𝐱̄t + Bk

t 𝐮̄t + 𝐰̄t

We still have a non-classical information structure
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Assume centralized information and use certainty equivalence
Local States Mean-field state

Dynamics x̆it+1 = Ak
t x̆it + Bk

t ŭi
t + w̆i

t 𝐱̄t+1 = At𝐱̄t + Bt𝐮̄t + 𝐰̄t

Cost (x̆it)
⊺
Qk

t x̆it + (ŭi
t)

⊺
Rkt ŭi

t (𝐱̄t)
⊺
(Pxt +Qt)𝐱̄t + (𝐮̄t)

⊺
(Put + Rt)𝐮̄t
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Control Law ŭi
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Gains L̆kt = −( ⋅ ⋅ ⋅ )
−1(Bk

t )⊺M̆k
t+1Ak

t L̄t = −( ⋅ ⋅ ⋅ )
−1(B̄t)⊺𝐌̄t+1Āt

Riccati Equation M̆k
1:T = DRE(Ak

1:T, Bk
1:T, Qk

1:T, Rk1:T) M̄1:T = DRE(Ā1:T, B̄1:T, Q̄1:T + Px1:T,
R̄1:T + Pu1:T)
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Local States Mean-field state

Dynamics x̆it+1 = Ak
t x̆it + Bk

t ŭi
t + w̆i

t 𝐱̄t+1 = At𝐱̄t + Bt𝐮̄t + 𝐰̄t

Cost (x̆it)
⊺
Qk

t x̆it + (ŭi
t)

⊺
Rkt ŭi

t (𝐱̄t)
⊺
(Pxt +Qt)𝐱̄t + (𝐮̄t)

⊺
(Put + Rt)𝐮̄t

Control Law ŭi
t = L̆kt x̆it 𝐮̄t = 𝐋̄t𝐱̄t

Gains L̆kt = −( ⋅ ⋅ ⋅ )
−1(Bk

t )⊺M̆k
t+1Ak

t L̄t = −( ⋅ ⋅ ⋅ )
−1(B̄t)⊺𝐌̄t+1Āt

Riccati Equation M̆k
1:T = DRE(Ak

1:T, Bk
1:T, Qk

1:T, Rk1:T) M̄1:T = DRE(Ā1:T, B̄1:T, Q̄1:T + Px1:T,
R̄1:T + Pu1:T)

K equations, one for each sub-population 1 equation for all mean-fields



ui
t = ŭi

t + ūk
t = L̆kt (xit − x̄kt ) + L̄kt 𝐱̄t

Optimal centralized solution can be implemented
with mean-field sharing information structure.
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Solution generalizes to . . .

Major-minor setup One major agent and a population of minor agents.

Tracking cost function ∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x

i
t − x̊it)

⊺Qk
t (xit − x̊it) + (ui

t)⊺Rktui
t]

+ (𝐱̄t − rt)⊺Pxt (𝐱̄t − rt) + 𝐮̄⊺
t Put 𝐮̄t

Systems coupled through
weighted mean-field

x̄kt =
1
|𝒩k| ∑i∈𝒩k

λixit, ūk
t =

1
|𝒩k| ∑i∈𝒩k

λiui
t.



But what if the mean-field is not observed?
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Partial mean-field sharing information structure

Notation We will compare performance with system where mean-
field is completely observed. To avoid confusion, use

State: sit; Actions: vit.

and similar notation for mean-field s̄kt , etc.

Set 𝒮: MF observed Set 𝒮c: MF not observed
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Partial mean-field sharing information structure

Estimated mean-field 𝐳t = (z1t , . . . , zKt ) = 𝔼[𝐬̄t | {s̄kt }k∈𝒩],

where zkt+1 =
{

s̄kt+1, k ∈ 𝒮

Ak
t zkt + (Bk

t L̄kt +Dk
t + Ekt L̄t)𝐳t, k ∉ 𝒮

Set 𝒮: MF observed Set 𝒮c: MF not observed
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Certainty equivalence controller and its performance

Certainty equivalence
controller

ui
t = L̆kt (sit − zkt ) + L̄kt𝐳t
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Certainty equivalence controller and its performance

Certainty equivalence
controller

ui
t = L̆kt (sit − zkt ) + L̄kt𝐳t

Key Lemma Under the certainty equivalence control: s̆it = x̆it. Thus,

Ĵ − J∗ = 𝔼 [
T

∑
t=1

[𝐬̄⊺
t Q̂t𝐬̄t + 𝐯̄⊺

t R̂t𝐯̄t − 𝐱̄⊺
t Q̂t𝐱̄t − 𝐮̄⊺

t R̂t𝐮̄t]]
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t Q̂t𝐱̄t − 𝐮̄⊺

t R̂t𝐮̄t]]
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T

∑
t=1

[ ζt ξt ]Q̃[

ζt
ξt ]]

, where ζkt = x̄kt − zkt and ξkt = s̄kt − zkt
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Certainty equivalence
controller
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t = L̆kt (sit − zkt ) + L̄kt𝐳t
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Ĵ − J∗ = 𝔼 [
T

∑
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t Q̂t𝐬̄t + 𝐯̄⊺

t R̂t𝐯̄t − 𝐱̄⊺
t Q̂t𝐱̄t − 𝐮̄⊺

t R̂t𝐮̄t]]

= 𝔼 [
T

∑
t=1

[ ζt ξt ]Q̃[

ζt
ξt ]]

, where ζkt = x̄kt − zkt and ξkt = s̄kt − zkt

Moreover,
[

ζt+1

ξt+1 ]
= Ãt

[

ζt
ξt ]

+
[

h ∘ 𝐰̄t

h ∘ 𝐰̄t ]



Decentralized control with exchangeable agents–(Arabneydi and Mahajan)
12

Certainty equivalence controller and its performance

Certainty equivalence
controller

ui
t = L̆kt (sit − zkt ) + L̄kt𝐳t

Key Lemma Under the certainty equivalence control: s̆it = x̆it. Thus,

Ĵ − J∗ = 𝔼 [
T

∑
t=1

[𝐬̄⊺
t Q̂t𝐬̄t + 𝐯̄⊺

t R̂t𝐯̄t − 𝐱̄⊺
t Q̂t𝐱̄t − 𝐮̄⊺

t R̂t𝐮̄t]]

Quadratic Cost = 𝔼 [
T

∑
t=1

[ ζt ξt ]Q̃[

ζt
ξt ]]

, where ζkt = x̄kt − zkt and ξkt = s̄kt − zkt

Moreover,
[

ζt+1

ξt+1 ]
= Ãt

[

ζt
ξt ]

+
[

h ∘ 𝐰̄t

h ∘ 𝐰̄t ]
Linear Dynamics
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Performance bound Let n = mink∉S{|𝒩k|}. Suppose all noises are independent. Then,

there exists a matrix C such that X̃1 ≤ C/n and W̃t ≤ C/n. Thus,
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Exact Performance Ĵ−J∗ = Tr(X̃1M̃1)+
T−1

∑
t=1

Tr(W̃tM̃t+1)where M̃1:T = DLE(Ã1:T, Q̃1:T)
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An example: Demand response
with minimum discomfort to users
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Demand response of space heaters

Dynamics of space heater xit+1 = a(xit − xnom) + b(ui
t + unom) + wi

t

Objective 𝔼
[

1
n

T

∑
t=1

n

∑
i=1

[qt(x
i
t − xides)2 + rt(ui

t)2] + pt(𝐱̄t − 𝐱̄
ref
t )2

]



Decentralized control with exchangeable agents–(Arabneydi and Mahajan)
15

Everyone follows the mean-field
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Everyone follows the optimal strategy
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2

System with exchangeable agents

Dynamics 𝐱t+1 = ft(𝐱t, 𝐮t,𝐰t) with per-step cost ct(𝐱t, 𝐮t).

Pair of exchangeable agents Agents i and j are exchangeable if

𝒳i = 𝒳j, 𝒰i = 𝒰j, 𝒲i = 𝒲j.

ft(σij𝐱t, σij𝐮t, σij𝐰t) = σij(ft(𝐱t, 𝐮t,𝐰t))
ct(σij𝐱t, σij𝐮t) = ct(𝐱t, 𝐮t).

Set of exchangeable agents A set of agents is exchangeable if every pair in that set is exchangeable

System with partially
exchangeable agents

. . . is a multi-agent system where the set of agents can be
partitioned into disjoint sets of exchangeable agents.
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Linear quadratic system with partially exchangeable agents

Dynamics 𝐱t+1 = At𝐱t + Bt𝐮t +𝐰t

Cost
T

∑
t=1

[𝐱
⊺
tQt𝐱t + 𝐮⊺

t Rt𝐮t]

Irrespective of the information structure
such a system is equivalent to a mean-field coupled system

Agent dynamics in
sub-population k

xit+1 = Ak
t xit + Bk

tui
t + Dk

t 𝐱̄t + Ekt 𝐮̄t +wi
t

Cost
T

∑
t=1 [

∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x

i
t)

⊺
Qk

t xit+(ui
t)

⊺
Rktui

t]+ 𝐱̄⊺
t Pxt 𝐱̄t + 𝐮̄⊺

t Put 𝐮̄t ]
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Assume centralized information and use certainty equivalence
Local States Mean-field state

Dynamics x̆it+1 = Ak
t x̆it + Bk

t ŭi
t + w̆i

t 𝐱̄t+1 = At𝐱̄t + Bt𝐮̄t + 𝐰̄t

Cost (x̆it)
⊺
Qk

t x̆it + (ŭi
t)

⊺
Rkt ŭi

t (𝐱̄t)
⊺
(Pxt +Qt)𝐱̄t + (𝐮̄t)

⊺
(Put + Rt)𝐮̄t

Control Law ŭi
t = L̆kt x̆it 𝐮̄t = 𝐋̄t𝐱̄t

Gains L̆kt = −( ⋅ ⋅ ⋅ )
−1(Bk

t )⊺M̆k
t+1Ak

t L̄t = −( ⋅ ⋅ ⋅ )
−1(B̄t)⊺𝐌̄t+1Āt

Riccati Equation M̆k
1:T = DRE(Ak

1:T, Bk
1:T, Qk

1:T, Rk1:T) M̄1:T = DRE(Ā1:T, B̄1:T, Q̄1:T + Px1:T,
R̄1:T + Pu1:T)

K equations, one for each sub-population 1 equation for all mean-fields
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Partial mean-field sharing information structure

Estimated mean-field 𝐳t = (z1t , . . . , zKt ) = 𝔼[𝐬̄t | {s̄kt }k∈𝒩],

where zkt+1 =
{

s̄kt+1, k ∈ 𝒮

Ak
t zkt + (Bk

t L̄kt +Dk
t + Ekt L̄t)𝐳t, k ∉ 𝒮

Set 𝒮: MF observed Set 𝒮c: MF not observed
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Exact Performance Ĵ−J∗ = Tr(X̃1M̃1)+
T−1

∑
t=1

Tr(W̃tM̃t+1)where M̃1:T = DLE(Ã1:T, Q̃1:T)
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Solution generalizes to . . .

Major-minor setup One major agent and a population of minor agents.

Tracking cost function ∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x

i
t − x̊it)

⊺Qk
t (xit − x̊it) + (ui

t)⊺Rktui
t]

+ (𝐱̄t − rt)⊺Pxt (𝐱̄t − rt) + 𝐮̄⊺
t Put 𝐮̄t

Systems coupled through
weighted mean-field

x̄kt =
1
|𝒩k| ∑i∈𝒩k

λixit, ūk
t =

1
|𝒩k| ∑i∈𝒩k

λiui
t.
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Conclusion

Salient Features The solution complexity depends only on the number of sub-populations;
not on the number of agents.
Agents don’t need to be aware of the number of agents.

Same performance as centralized information.

Thus, centralized performance can be achieved by simply
sharing the mean-field (empirical mean) of the states!

Generalizations Noisy observation of mean-field
Delay in the observation of mean-field
Controlled Markov processes

arXiv:1609.00056

http://arxiv.org/abs/1609.00056
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Optimal decentralized control: Applications and Theory

Internet of Things
Smart Grids

Sensor NetworksSwarm Robotics

Salient features
Multiple decision makers
Access to different information
Cooperate towards a common objective

Series of positive results in the last 10-15 years:
funnel causality, quadratic invariance, common information

approach, and others.

Explicit solutions are rare and typically exist for
systems with two or three agents.
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System with exchangeable agents

Dynamics 𝐱t+1 = ft(𝐱t, 𝐮t,𝐰t) with per-step cost ct(𝐱t, 𝐮t).

Pair of exchangeable agents Agents i and j are exchangeable if

𝒳i = 𝒳j, 𝒰i = 𝒰j, 𝒲i = 𝒲j.

ft(σij𝐱t, σij𝐮t, σij𝐰t) = σij(ft(𝐱t, 𝐮t,𝐰t))
ct(σij𝐱t, σij𝐮t) = ct(𝐱t, 𝐮t).

Set of exchangeable agents A set of agents is exchangeable if every pair in that set is exchangeable

System with partially
exchangeable agents

. . . is a multi-agent system where the set of agents can be
partitioned into disjoint sets of exchangeable agents.
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Linear quadratic system with partially exchangeable agents

Dynamics 𝐱t+1 = At𝐱t + Bt𝐮t +𝐰t

Cost
T

∑
t=1

[𝐱
⊺
tQt𝐱t + 𝐮⊺

t Rt𝐮t]

Irrespective of the information structure
such a system is equivalent to a mean-field coupled system

Agent dynamics in
sub-population k

xit+1 = Ak
t xit + Bk

tui
t + Dk

t 𝐱̄t + Ekt 𝐮̄t +wi
t

Cost
T

∑
t=1 [

∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x

i
t)

⊺
Qk

t xit+(ui
t)

⊺
Rktui

t]+ 𝐱̄⊺
t Pxt 𝐱̄t + 𝐮̄⊺

t Put 𝐮̄t ]
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A surprisingly simple solution . . .

Parallel axis Theorem
1
|𝒩k| ∑i∈𝒩k

(xit)⊺Qk
t xit =

1
|𝒩k| ∑i∈𝒩k

(x̆it)⊺Qk
t x̆it+(x̄kt )⊺Qk

t x̄kt ,

where x̆it = xit − x̄kt .

Decoupled Per-step cost ∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x̆

i
t)

⊺Qk
t x̆it] + 𝐱̄⊺

t (Q̄t + Pxt )𝐱̄t
+ similar u-terms

Noise coupled Dynamics x̆it+1 = Ak
t x̆it + Bk

t ŭi
t + w̆i

t, 𝐱̄t+1 = Ak
t 𝐱̄t + Bk

t 𝐮̄t + 𝐰̄t

We still have a non-classical information structure
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Assume centralized information and use certainty equivalence
Local States Mean-field state

Dynamics x̆it+1 = Ak
t x̆it + Bk

t ŭi
t + w̆i

t 𝐱̄t+1 = At𝐱̄t + Bt𝐮̄t + 𝐰̄t

Cost (x̆it)
⊺
Qk

t x̆it + (ŭi
t)

⊺
Rkt ŭi

t (𝐱̄t)
⊺
(Pxt +Qt)𝐱̄t + (𝐮̄t)

⊺
(Put + Rt)𝐮̄t

Control Law ŭi
t = L̆kt x̆it 𝐮̄t = 𝐋̄t𝐱̄t

Gains L̆kt = −( ⋅ ⋅ ⋅ )
−1(Bk

t )⊺M̆k
t+1Ak

t L̄t = −( ⋅ ⋅ ⋅ )
−1(B̄t)⊺𝐌̄t+1Āt

Riccati Equation M̆k
1:T = DRE(Ak

1:T, Bk
1:T, Qk

1:T, Rk1:T) M̄1:T = DRE(Ā1:T, B̄1:T, Q̄1:T + Px1:T,
R̄1:T + Pu1:T)

K equations, one for each sub-population 1 equation for all mean-fields
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Solution generalizes to . . .

Major-minor setup One major agent and a population of minor agents.

Tracking cost function ∑
k∈𝒦

∑
i∈𝒩k

1
|𝒩k|[(x

i
t − x̊it)

⊺Qk
t (xit − x̊it) + (ui

t)⊺Rktui
t]

+ (𝐱̄t − rt)⊺Pxt (𝐱̄t − rt) + 𝐮̄⊺
t Put 𝐮̄t

Systems coupled through
weighted mean-field

x̄kt =
1
|𝒩k| ∑i∈𝒩k

λixit, ūk
t =

1
|𝒩k| ∑i∈𝒩k

λiui
t.
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Partial mean-field sharing information structure

Estimated mean-field 𝐳t = (z1t , . . . , zKt ) = 𝔼[𝐬̄t | {s̄kt }k∈𝒩],

where zkt+1 =
{

s̄kt+1, k ∈ 𝒮

Ak
t zkt + (Bk

t L̄kt +Dk
t + Ekt L̄t)𝐳t, k ∉ 𝒮

Set 𝒮: MF observed Set 𝒮c: MF not observed
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Certainty equivalence controller and its performance

Exact Performance Ĵ−J∗ = Tr(X̃1M̃1)+
T−1

∑
t=1

Tr(W̃tM̃t+1)where M̃1:T = DLE(Ã1:T, Q̃1:T)

Performance bound Let n = mink∉S{|𝒩k|}. Suppose all noises are independent. Then,

there exists a matrix C such that X̃1 ≤ C/n and W̃t ≤ C/n. Thus,

Ĵ − J∗ ∈ 𝒪
(
T
n)

,

Infinite horizon Results extend to infinite horizon setup under standard assumptions.

For both discounted and average cost setup:

Ĵ − J∗ ∈ 𝒪
(
1
n)

, c.f. 𝒪
(
1
√n)

in MFG
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Everyone follows the optimal strategy


