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Abstract—We consider team optimal control of decentralized
systems with linear dynamics, quadratic costs, and arbitrary
disturbance that consist of multiple sub-populations with ex-
changeable agents (i.e., exchanging two agents within the same
sub-population does not affect the dynamics or the cost). Such
a system is equivalent to one where the dynamics and costs
are coupled across agents through the mean-field (or empirical
mean) of the states and actions (even when the primitive random
variables are non-exchangeable). Two information structures are
investigated. In the first, all agents observe their local state and
the mean-field of all sub-populations; in the second, all agents
observe their local state but the mean-field of only a subset of the
sub-populations. Both information structures are non-classical
and not partially nested. Nonetheless, it is shown that linear
control strategies are optimal for the first and approximately
optimal for the second; the approximation error is inversely
proportional to the size of the sub-populations whose mean-fields
are not observed. The corresponding gains are determined by the
solution of K+1 decoupled standard Riccati equations, where K

is the number of sub-populations. The dimensions of the Riccati
equations do not depend on the size of the sub-populations; thus
the solution complexity is independent of the number of agents.
Generalizations to major-minor agents, tracking cost, weighted
mean-field, and infinite horizon are provided. The results are
illustrated using an example of demand response in smart grids.

Index Terms—Stochastic dynamic teams, multi-agent systems,
decentralized control, non-classical information structures, linear
quadratic systems, team theory, large-scale systems.

I. INTRODUCTION

A. Motivation

Team optimal control of decentralized systems has been an

important research topic since the mid 1960s. Many of the

initial research results were negative and showed that even

simple dynamical systems with two agents can be difficult

to design—even in the celebrated linear quadratic Gaussian

(LQG) framework. In particular, non-linear strategies can

outperform the best linear strategy [2]; even if attention is

restricted to linear strategies, the best linear strategy may

not have a finite dimensional representation [3]. Since then,

various solution methodologies for the optimal control of

decentralized systems have been proposed and there has been

considerable progress in understanding the nature of system

dynamics and the information structure under which these

J. Arabneydi and A. Mahajan are with the Department of Electrical and
Computer Engineering, McGill University, Montreal, Quebec, Canada. Email:
jalal.arabneydi@mail.mcgill.ca and aditya.mahajan@mcgill.ca.

This research was funded by the Natural Sciences and Engineering Research
Council of Canada through Grant NSERC-RGPIN 402753-11.

Preliminary version of this paper [1] was presented at the 54th IEEE
Conference on Decision and Control (CDC), Osaka, Japan, 2015.

methodologies work. See [4] and references therein for an

overview.

In spite of this progress, there is a big gap between the

theory and applications of optimal decentralized control. On

the one hand, the envisioned applications—which include

networked control systems, swarm robotics, and modern power

systems—often consist of multiple interconnected dynamical

systems and controllers. On the other hand, explicit optimal

solutions are available only for systems with a few (often two

or three) controllers [5]–[7]. The model and results presented

in this paper attempt to reduce the gap between theory and

applications.

In particular, we study decentralized control systems in

which the dynamics and cost satisfy a property that we call

exchangeability. In a dynamical system, we say agents i and

j are exchangeable if exchanging (or interchanging) agents i
and j does not affect the dynamics or the cost (the formal

definition is given below). Or, equivalently, the dynamics and

the cost do not depend on the index assigned to the two agents.

In many applications of decentralized systems, the system

may be partitioned into sub-populations where all agents

within a sub-population are exchangeable.1 We call such

systems as systems with partially exchangeable agents. In

this paper, we develop a framework for the design of optimal

decentralized control for such systems.

B. System with partially exchangeable agents

To formally define exchangeability, consider a multi-agent

dynamical system where N denotes the set of agents. The

state and action of agent i, i ∈ N , at time t are denoted by xi
t

and ui
t, where xi

t ∈ X i and ui
t ∈ U i. Let xt = (xi

t)i∈N and

ut = (ui
t)i∈N denote the state and action of the entire system.

The dynamics are given by

xt+1 = ft(xt,ut,wt), (1)

where ft is system dynamics and {wt}t≥1, where wt =
(wi

t)i∈N and wi
t ∈ Wi, is the disturbance noise process. A

per-step cost ct(xt,ut) is incurred at each time t.
For now, we do not specify the information structure as we

want to identify the system properties that do not depend on

the information structure.

1For example, consider an aggregator that provides demand response as
a service by controlling the air conditioners in multiple neighborhoods in a
city. The air-conditioners could be partitioned into sub-populations based on
their tonnage and type (window, split, or packages AC). To the first-level
of approximation, all air conditioners with the same tonnage and type have
same dynamics and cost—and, therefore, are exchangeable. Similar situations
arise in swarm robotics (where the subpopulations correspond to robots with
different capabilities), and other engineering applications.
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For any state x and agents i, j ∈ N , let σi,jx denote the

state when agents i and j are exchanged. For example, if x =
(x1, x2, x3, x4, x5), then σ2,4x = (x1, x4, x3, x2, x5). Similar

interpretation holds for σi,ju and σi,jw.

Definition 1 (Exchangeable agents) A pair (i, j) of agents

is exchangeable if the following conditions hold:

1) X i = X j , U i = U j , and Wi = Wj , i.e., the states,

actions, and disturbances of agents i and j have the same

dimensions.

2) For any t, and any xt, ut, and wt,

ft(σi,jxt, σi,jut, σi,jwt) = σi,j

(

ft(xt,ut,wt)
)

,

i.e., exchanging agents i and j does not affect the system

dynamics.

3) For any t, and any xt and ut,

ct(σi,jxt, σi,jut) = ct(xt,ut),

i.e., exchanging agents i and j does not affect the cost.

Definition 2 (Exchangeable set of agents) A set S of

agents, S ⊆ N , is exchangeable if every pair of agents in S
is exchangeable.

Definition 3 (System with partially exchangeable agents)

The multi-agent system described above is called a

system with partially exchangeable agents if the set N
of agents can be partitioned into K disjoint subsets N k,

k ∈ K := {1, . . . ,K}, such that for each k ∈ K, the set N k

of agents is exchangeable.

In this paper, we investigate optimal decentralized control

of linear quadratic system (i.e., a system where dynamics are

linear and the per-step cost is quadratic) with partially ex-

changeable agents. In a subsequent paper, we will investigate

systems with controlled Markovian dynamics.

C. Notation

For a set N , |N | denotes its size. For a matrix A, A⊺

denotes its transpose, Tr(A) denotes its trace; if A is square,

A ≥ 0 (respectively A > 0) denotes that A is positive semi-

definite (respectively positive definite). For matrices A and B
of appropriate size, A ≤ B means B − A ≥ 0, diag(A,B)
denotes a block diagonal matrix with diagonal terms A and B,√
A denotes a matrix C such that2 C⊺C = A, A ◦B denotes

Hadamard product, and A ⊗ B denotes Kronecker product.

For matrices A,B, and C with the same number of columns,

rows(A,B,C) denotes the matrix [A⊺, B⊺, C⊺]⊺. For vectors

x, y, and z, vec(x, y, z) denotes the vector [x⊺, y⊺, z⊺]⊺.

Superscripts index agents (indexed by i) or sub-populations

(indexed by k). Given a set N of agents and states xi, i ∈
N , bold x denotes vec(x1, . . . , x|N |); when all states are

of the same dimension, 〈(xi)i∈N 〉 denotes the mean-field
1

|N |

∑|N |
i=1 x

i of (xi)i∈N . For vectors and matrices, we use

the short hand notation x1:t or A1:t to denote (x1, . . . , xt)
and (A1, . . . , At), respectively.

2Note that sometimes
√
A is defined as a matrix C such that CC = A.

We are not using that definition here.

R, R≥0, and R>0 denote the sets of real, non-negative real,

and positive real numbers, respectively. 1n×m denotes n×m
matrix of ones, In denotes n×n identity matrix. We omit the

subscripts when the dimensions are clear from the context.

For a random variable x, E[x] and var(x) denote its mean

and variance, respectively.

Given horizon T and matrices A1:T and Q1:T , the notation

M1:T = DLET(A1:T , Q1:T ) means that M1:T is the solution

of the finite horizon discrete Lyapunov equation, i.e., MT =
QT , and for t ∈ {T − 1, . . . , 1}, Mt = At

⊺

Mt+1At +Qt.
Similarly, given a horizon T and matrices A1:T ,

B1:T , Q1:T , and R1:T , the notation M1:T =
DRET(A1:T , B1:T , Q1:T , R1:T ) means that M1:T is

the solution of the finite horizon discrete Riccati

equation, i.e., MT = QT , and for t ∈ {T − 1, . . . , 1},

Mt = −A⊺

tMt+1Bt (B
⊺

t Mt+1Bt +Rt)
−1

B⊺

t Mt+1At +
A⊺

tMt+1At +Qt.
Given a discount factor β ∈ (0, 1] and matrices A,B,Q,

and R, the notation M = DALEβ(A,Q) means that M is the

solution of the discrete algebraic Lyapunov equation

M = βA
⊺
MA+Q.

and the notation M = DAREβ(A,B,Q,R) means that M is

the solution of the discrete algebraic Riccati equation

M = −βA
⊺
MB

(

B
⊺
MB + β−1R

)−1
B

⊺
MA+βA

⊺
MA+Q.

II. PROBLEM FORMULATION AND LITERATURE OVERVIEW

A. Linear quadratic system with partially exchangeable

agents

1) System Model: Suppose the dynamics (1) are linear, i.e.,

xt+1 = Atxt +Btut +wt, (2)

where At and Bt are matrices of appropriate dimensions

and {x1, {wt}Tt=1} are random variables defined on a com-

mon probability space. The cost is quadratic, i.e., for t ∈
{1, . . . , T − 1},

ct(xt,ut) = xt
⊺
Qtxt + ut

⊺
Rtut, (3)

and t = T ,

cT (xT ) = xT
⊺
QTxT , (4)

where Qt and Rt are matrices of appropriate dimensions.

Furthermore, assume that the above system is partially ex-

changeable, i.e., agents N can be partitioned into K disjoint

sub-populations N k, k ∈ K := {1, . . . ,K}, such that for each

k ∈ K, the agents N k are exchangeable. Moreover, for any

sub-population k ∈ K and agent i ∈ N k, state xi
t takes values

in R
dk

x and action ui
t takes values in R

dk

u .

The mean-field of states3 x̄k
t of sub-population k, k ∈ K,

is defined as the empirical mean of the states of all agents in

that sub-population, i.e.,

x̄k
t := 〈(xi

t)i∈Nk〉 = 1

|N k|
∑

i∈Nk

xi
t, k ∈ K.

3In the sequel, we refer to mean-field of the states simply as mean field.
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Similarly, the mean-field of the actions ūk
t of sub-population

k, k ∈ K, is defined as the empirical mean of the actions of

all agents in that sub-population, i.e.,

ūk
t := 〈(ui

t)i∈Nk〉 = 1

|N k|
∑

i∈Nk

ui
t, k ∈ K.

The mean-field of states and actions of the entire population

are denoted by x̄t and ūt respectively, i.e.,

x̄t = vec(x̄1
t , . . . , x̄

K
t ), ūt = vec(ū1

t , . . . , ū
K
t ).

For ease of reference, the notation is summarized in Table I.

TABLE I
SUMMARY OF THE NOTATION USED IN THIS PAPER.

Notation used for agent i ∈ N k belonging to sub-population k ∈ K

xi
t
∈ R

d
k

x State of agent i

ui
t
∈ R

d
k

u Action of agent i

Notation used for sup-population k ∈ K = {1, . . . ,K}
N k Entire sub-population k
x̄k
t
= 〈(xi

t
)
i∈Nk 〉 Mean-field of states at time t

ūk
t
= 〈(ui

t
)
i∈Nk 〉 Mean-field of actions at time t

Notation used for entire population

N =
⋃

k∈K N k Entire population

xt = (xi
t
)i∈N Joint state of entire population at time t

ut = (ui
t
)i∈N Joint action of entire population at time t

x̄t = vec(x̄1

t
, . . . , x̄K

t
) Mean-field of states of entire population at t

ūt = vec(ū1

t
, . . . , ūK

t
) Mean-field of actions of entire population at t

Proposition 1 In the linear quadratic system with partially

exchangeable agents described above, there exist matri-

ces {Ak
t , B

k
t , D

k
t , E

k
t , Q

k
t , R

k
t }k∈K and P x

t and Pu
t such that

the dynamics of agent i ∈ N k of sub-population k, k ∈ K,
may be written as

xi
t+1 = Ak

t x
i
t +Bk

t u
i
t +Dk

t x̄t + Ek
t ūt + wi

t; (5)

the per-step cost at time t ∈ {1, . . . , T −1}, may be written as

ct(xt,ut, x̄t, ūt) = x̄
⊺

t P
x
t x̄t + ū

⊺

t P
u
t ūt

+
∑

k∈K

∑

i∈Nk

1

|N k|
[

(xi
t)

⊺

Qk
t x

i
t + (ui

t)
⊺

Rk
t u

i
t

]

; (6)

and the per-step cost at time t = T , may be written as

cT (xT , x̄T ) = x̄
⊺

TP
x
T x̄T +

∑

k∈K

∑

i∈Nk

1

|N k| (x
i
T )

⊺

Qk
Tx

i
T . (7)

The proof is presented in Appendix A.

Remark 1 In general, the matrices (Ak
t , B

k
t , D

k
t , E

k
t , Q

k
t , R

k
t )

and (P x
t , P

u
t ) may depend on the number {|N k|}k∈K of

agents in the sub-populations, but their dimensions do not.

Thus, any linear quadratic system with partial exchangeable

agents—irrespective of the information structure—is equiva-

lent to a mean-field coupled system with the same information

structure. In the rest of this paper, we investigate the optimal

control of such systems under the following two information

structures.

2) Observation model and information structure: We con-

sider two information structures; in both, agents perfectly

recall all data that they observe. In the first information

structure, which we call mean field sharing and denote by

MFS-IS, every agent i ∈ N perfectly observes its local state

xi
t and the global mean-field x̄t. Thus, the data Iit available

to agent i at time t is given by

Iit = (xi
1:t, u

i
1:t−1, x̄1:t). (MFS-IS)

In the second information structure, which we call partial

mean field sharing and denote by PMFS-IS, there exists a

subset S of the sub-populations K such that every agent i ∈ N
perfectly observes its local state xi

t and the mean-fields of sub-

populations S , i.e., {x̄k
t }k∈S . We use Sc to denote K\S . The

data Iit available to agent i at time t is given by

Iit = (xi
1:t, u

i
1:t−1, (x̄

k
1:t)k∈S). (PMFS-IS)

Under both information structures, agent i chooses ui
t as

follows:

ui
t = git(I

i
t). (8)

The function git is called the control law of agent i at time t.
The collection gi = (gi1, g

i
2, . . . , g

i
T ) is called the control

strategy of agent i. The collection g = (gi)i∈N is called the

control strategy of the system. The performance of strategy g

is given by

J(g) = E
g

[ T−1
∑

t=1

ct(xt,ut, x̄t, ūt) + cT (xT , x̄T )

]

, (9)

where the expectation is with respect to the measure induced

on all the system variables by the choice of strategy g.

3) The optimization problem: We are interested in the

following optimization problem.

Problem 1 In the model described above, find a strategy g∗

that minimizes (9), i.e.,

J∗ := J(g∗) = inf
g

J(g),

where the infimum is taken over all strategies of form (8).

B. Conceptual difficulties

There are several conceptual difficulties in solving Prob-

lem 1 because it has a non-classical information structure.

Information structure refers to the set of information known

to all agents at all times. If every decision maker knows the

observations and actions of all decision makers that acted be-

fore it, then the information structure is said to be classical; if

every decision maker knows the observations and actions of all

decision makers whose actions effect its observations, then the

information structure is said to be partially nested; otherwise,

the information structure is said to be non-classical [8], [9].

For linear quadratic systems with classical or partially nested

information structures, when the primitive random variables

are jointly Gaussian, the optimal control action is a linear (or

affine) function of the observations4. This is not necessarily

4In classical information structure with state feedback, the optimal control
action is linear function of the state and this result holds even when the
primitive random variables are not Gaussian.
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the case when the information structure is non-classical as

is illustrated by the Witsenhausen counterexample [2], which

presents a linear quadratic Gaussian model with non-classical

information structure where non-linear strategies outperform

the best linear strategy. The model presented in this paper is

neither classical nor partially nested nor the primitive random

variables are necessarily Gaussian, so it is not known a priori

whether there is no loss of optimality in restricting attention

to linear strategies.

Even when linear strategies are not optimal, sometimes

attention is restricted to linear strategies because they are

simple and easy to implement. For systems with non-classical

information structure, the problem of finding the best linear

strategy need not be convex; it is convex only for special

sparsity pattern such as funnel causality [10] and quadratic

invariance [11]. Furthermore, as is illustrated by the Whittle

and Rudge counterexample [3], even when the problem of

finding the best linear strategy is convex, the best linear

strategy might not have a finite dimensional representation.

Finally, the usual curse of dimensionality is exasperated

in systems with non-classical information structure. Even in

systems with finite state and action spaces, the complexity

of finding the optimal control strategy belongs to NEXP

complexity class [12].

C. Contributions of the paper

1) We show that linear control laws are team optimal

for MFS-IS (even when the noise processes are not

Gaussian). As argued earlier, MFS-IS does not fall

into the class of information structures for which linear

strategies are known to be optimal. We show that the

corresponding gains are computed by solving K + 1
decoupled Riccati equations (where K is the number of

sub-populations) (Theorem 1).

2) We propose a certainty equivalence linear strategy for

PMFS-IS and show that the error satisfies a Lyapunov

equation. The approximation error converges to zero at

a rate that is inversely proportional to the number of

agents in the sub-populations whose mean-fields are not

observed (Theorem 2).

3) The salient feature of our main results is that the solution

complexity does not depend on the number of agents

in each sub-population; rather, it only depends on the

number of sub-populations. Furthermore, the optimal

gains can be computed in a decentralized manner such

that each agent simply needs to solve at most two (rather

than all) Riccati equations.

4) We show that our results generalize to variations of the

basic model that are not partially exchangeable includ-

ing: systems where the objective is to optimally track

reference trajectories (Sec. IV-C) and systems where

agents have individual weights (Sec. IV-D).

5) When the dynamics and the per-step cost are time-

homogeneous, we show that our results extend to infinite

horizon setups: both for the discounted cost setup with

any discount factor in (0, 1) and for average-cost per

unit time setup. For both setups, the optimal control

strategy for MFS-IS and the approximately optimal

control strategy for PMFS-IS are time-homogeneous and

the corresponding gains are computed by solving K+1
decoupled algebraic Riccati equations.

D. Literature overview

Our model and results for MFS-IS are similar in spirit to

those obtained in [13] under stronger modeling assumptions.

In [13], the authors consider a homogeneous population of

dynamically decoupled agents which are coupled in the cost

through a weighted mean-field term. Two models are investi-

gated: (a) hard-constraint model where the weighted mean-

field of actions must equal a pre-specified linear function

of the weighted mean-field of states; and (b) soft-constraint

model where the above hard constraint is relaxed by penalizing

it in the cost. For both models, the authors show that the

optimal centralized control laws are linear in the local state

and the mean field; the corresponding gains are computed

by two decoupled Riccati equations. In section IV-D, we

generalize our results to the case when a weighted empirical

mean field is shared. In contrast to [13], we consider multiple

sub-populations and allow agents to be coupled in dynamics.

Note that approximation results similar to those for partial

mean-field sharing were not considered in [13].

Our results have similar features to those obtained for

centralized linear quadratic mean-field control [14], [15]. In

these models, the dynamics and the cost depend on the

statistical mean-field of the state and action. Such a model

may be viewed as a special case of our model when we restrict

to a single homogeneous sub-population and consider the limit

of infinite number of agents (and therefore the empirical mean

and the statistical mean are the same). Our proof technique,

which relies on a simple change of variables, is conceptually

simpler than that of [14], [15].5 It is worth highlighting that

the linear quadratic mean-field control model is a centralized

control problem and the results of [14], [15] do not apply to

the multi-agent models that we consider.

Recently, an iterative bidding strategy was proposed in [17]

for the optimal control multi-agent systems with decoupled dy-

namics that are coupled through a constraint. For LQG agents,

the scheme operates as follows: at each time, a coordinator sets

a price profile for all future times; agents submit a bid profile

for all future times; the coordinator updates the prices and

the process continues until the bids have converged. Agents

choose the first value of their bid as their action and the above

process is repeated at the next time step. In this scheme, agents

do not need to know the system dynamics of other agents. In

contrast, we assume that the system dynamics are common

knowledge to all agents. However, in our model, agents only

need to share the mean-field of their states (which can be

computed using a consensus algorithm) rather than iteratively

sharing the bid profile for all future times.

A decomposition-coordination approach for optimal decen-

tralized control of deterministic linear quadratic systems was

5In [14], first coupled forward and backward stochastic differential equa-
tions are derived and then they are decoupled into two Riccati equations using
the four step technique of [16]. In [15], a matrix dynamical optimization
method is used.
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proposed in [18], [19]. This is an iterative approach. Each

iteration consists of two steps: (i) a decomposition step in

which each agent assumes decoupled dynamics and costs and

computes its local control trajectory by solving an optimal

tracking problem from pre-specified linear offsets for the

dynamics and a reference trajectory for the cost; (ii) a coor-

dination step in which the linear offsets for the dynamics and

reference trajectories for the cost are computed for all agents

from the pre-specified control trajectories. It is shown that this

iterative process converges to the optimal centralized solution.

In contrast to such decomposition-coordination methods, our

proposed solution is not iterative. The optimal gains for all

agents are computed in a single step by solving Riccati

equations. Furthermore, our solution methodology works for

deterministic as well as stochastic systems.

A related solution approach called mean-field games (MFG)

was proposed in [20]–[28] to compute approximate Nash

equilibrium for large population games. The main idea is to

assume an infinite large size of each sub-population and solve

a set of two coupled equations: a Hamilton-Jacobi-Bellman

(HJB) equation to compute the best response of a generic

agent playing against a “mass trajectory” and a Fokker-Planck-

Kolmogorov (FPK) equation to compute the mass trajectory

from the strategy of a generic agent. It is shown that a solution

to these equations exists under appropriate conditions. The

resulting strategies are ε-Nash when the sub-populations are

finite, where the approximation error is O(1/
√
n), where n

denotes the size of the smallest sub-population. For linear

quadratic systems, the coupled HJB-FPK equations simplify to

K Riccati equations and two coupled forward and backward

ODEs. In contrast, in our solution there is an additional Riccati

equation instead of the coupled forward-backward equations.

The coupled equations in MFG depend on the initial mean-

field while the Riccati equations in our solution do not. The

key difference between our results and the results in the

MFG literature is that we obtain team optimal strategies of a

decentralized control problem while in the MFG literature one

typically obtains either Nash or Markov perfect equilibrium

strategies of a large population dynamic game problem. These

solution concepts are different.

The approach of mean-field games was used to obtain team

optimal solution of linear quadratic systems with decoupled

dynamics in [29]. It is shown that the MFG solution is ε-

socially optimal (with ε ∈ O(1/
√
n)). We obtain a similar

result for dynamically coupled agents with ε ∈ O(1/n).

It should be noted that identifying team-optimal control

laws for systems with coupled dynamics is significantly more

challenging than for systems with decoupled dynamics. This

is because, when the agent dynamics are decoupled (and

the primitive random variables are Gaussian), the information

structure is partially nested, so one may restrict attention to

linear strategies. Furthermore, for a finite horizon system,

team-optimal strategies may be obtained by solving a set of

linear equations.6 In contrast, when the system dynamics are

coupled, the information structure is non-classical and there

is no general solution methodology to obtain a team-optimal

solution.

III. MAIN RESULTS

A. Exact solution for MFS-IS

We impose following standard assumptions on the model

described in Proposition 1:

Assumption (A1) The primitive random variables

{x1, {wt}Tt=1} have zero mean, finite variance, and are

mutually independent.

Remark 2 Note that we do not require the primitive random

variables to be Gaussian. Nor do we require the initial state

x1 and the disturbance wt to be independent or exchangeable

across agents.

Assumption (A2) For every t, P x
t , Pu

t , Qk
t , and Rk

t are

symmetric matrices that satisfy

Qk
t ≥ 0, ∀k ∈ K, diag(Q1

t , . . . , Q
K
t ) + P x

t ≥ 0, (10)

Rk
t > 0, ∀k ∈ K, diag(R1

t , . . . , R
K
t ) + Pu

t > 0. (11)

Note that matrices P x
t and Pu

t are not required to be positive

semi-definite as long as (10)–(11) hold.

Theorem 1 Under (A1), (A2), and (MFS-IS), we have the

following results for Problem 1.

1) Structure of optimal strategy: The optimal strategy for

Problem 1 is unique and is linear in the local state and

the mean-field of the system. In particular,

ui
t = L̆k

t (x
i
t − x̄k

t ) + L̄k
t x̄t, (12)

where the gains {L̆k
t , L̄

k
t }T−1

t=1 are obtained by the so-

lution of K + 1 Riccati equations given below: one

for computing each L̆k
t , k ∈ K, and one for L̄t :=

rows(L̄1
t , . . . , L̄

K
t ).

2) Riccati equations: Let

Āt := diag(A1
t , . . . , A

K
t ) + rows(D1

t , . . . , D
K
t ),

B̄t := diag(B1
t , . . . , B

K
t ) + rows(E1

t , . . . , E
K
t ),

Q̄t := diag(Q1
t , . . . , Q

K
t ), R̄t := diag(R1

t , . . . , R
K).

Then, for t ∈ {1, . . . , T − 1}, define:

L̆k
t = −

(

(Bk
t )

⊺

M̆k
t+1B

k
t +Rk

t

)−1

(Bk
t )

⊺

M̆k
t+1A

k
t ,

L̄t = −
(

B̄
⊺

t M̄t+1B̄t + R̄t + Pu
t

)−1
B̄

⊺

t M̄t+1Āt,

where {M̆k
t }Tt=1 and {M̄t}Tt=1 are the solutions of

following Riccati equations:

M̆k
1:T = DRET(A

k
1:T , B

k
1:T , Q

k
1:T , R

k
1:T ), (13)

M̄1:T = DRET(Ā1:T , B̄1:T , Q̄1:T + P x
1:T , R̄1:T + Pu

1:T ).
(14)

6It is shown in [9] that a finite horizon system with partially nested
information structure may be converted to a static team by an appropriate
change of variables. The optimal control laws for such a static team may
be obtained by solving a set of linear equations [30]. The key conceptual
challenge in such problem is to identify sufficient statistics such that the
optimal control laws can be computed efficiently and the results can generalize
to infinite-horizon setup.
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3) Optimal performance: Let

Σ̆k
t :=

1

|N k|
∑

i∈Nk

var(wi
t − w̄k

t ), Σ̄t := var(w̄t),

Ξ̆k :=
1

|N k|
∑

i∈Nk

var(xi
1 − x̄k

1), Ξ̄ := var(x̄1).

Then, the optimal cost is given by

J∗ =
∑

k∈K

Tr(Ξ̆kM̆k
1 ) + Tr(Ξ̄M̄1)

+
T−1
∑

t=1

[

∑

k∈K

Tr(Σ̆k
t M̆

k
t+1) + Tr(Σ̄tM̄t+1)

]

. (15)

The proof is presented in Section V. Note that the dimen-

sions of Riccati equations (13) and (14) do not depend on

the sizes of the sub-populations (|N 1|, . . . , |NK |). Hence, the

solution complexity depends only on the number K of sub-

populations and it is independent of the number of agents

in each sub-population. To implement the optimal control

strategies:

• all agents must compute L̄1:T−1 by solving the Riccati

equation (14),

• agents of sub-population k must compute L̆k
1:T−1 by

solving the Riccati equation (13).

Then, an individual agent i of sub-population k, upon observ-

ing the local state xi
t and the global mean-field x̄t, chooses

its local control action according to (12). Note that each agent

needs to solve only two Riccati equations, although there are

K + 1 Riccati equations in Theorem 1.

Remark 3 An interesting feature of the solution is that all

agents in a particular sub-population use identical control laws.

This is a feature of the linear quadratic system and not of

exchangeability.7

Remark 4 If the per-step cost has cross-terms involving

(xi
t, x̄t) and (ui

t, ūt), i.e.,

∑

k∈K

∑

i∈Nk

1

|N k|
[

(xi
t)

⊺

Sx,k
t x̄t + (ui

t)
⊺

Su,k
t ūt

]

then, this cost can be re-written in the form of (6) and (7):

x̄
⊺

t S
x
t x̄t + ū

⊺

t S
u
t ūt

where

Sx
t := rows(Sx,1

t , . . . , Sx,K
t ), Su

t := rows(Su,1
t , . . . , Su,K

t ).

7The following example (which is based on an example presented in [31])
shows that asymmetric control strategies may outperform symmetric ones
even in systems with exchangeable agents. Consider a system with 2 agents
that runs for a horizon 2. Let X = U = {1, 2} and suppose the initial
state (x1

1
, x2

1
) is uniformly distributed over all possible values. Suppose the

dynamics are xi

2
= ui

1
, i ∈ {1, 2} and the costs are c1(x1,u1) = 0

and c2(x2,u2) is C when {x1

2
= x2

2
} (where C is a positive number)

and 0 otherwise. The above system is exchangeable. Any symmetric control
strategy puts positive probability on the event {u1

1
= u2

1
} (and, hence on the

event {x1

2
= x2

2
}) and, therefore, has a positive expected cost. On the other

hand, the asymmetric strategy ui

1
= i has zero cost. Thus, symmetric control

strategies are not optimal.

Remark 5 We assumed that there are no cross-terms of the

form x⊺Su in the per-step cost of (3) and (4). If such cross-

terms are present, there will be cross-terms involving (xi
t, u

i
t),

(xi
t, ūt), (x̄t, u

i
t), and (x̄t, ūt) in the equivalent mean-field

model presented in Proposition 1. These cross-terms can be

treated in the standard manner as cross-terms are treated in

centralized LQR.

Remark 6 Suppose in addition to (A1), we have that

{xi
1, {wi

t}t≥1}i∈N are independent and for any k ∈ K,

(xi
1)i∈Nk is i.i.d. with variance Ξk and {wi

t}i∈Nk is i.i.d. with

variance Σk
t . Then, we have

Σ̆k
t =

|N k| − 1

|N k| Σk
t , Σ̄t = diag(Σ1

t , . . . ,Σ
K
t ),

Ξ̆k =
|N k| − 1

|N k| Ξk, Ξ̄ = diag(Ξ1, . . . ,ΞK).

The expression of total cost (15) can be simplified accordingly.

B. Approximate solution for PMFS-IS

In this section, we consider Problem 1 under PMFS-IS.

Based on the results of Theorem 1, we propose a certainty

equivalence strategy for PMFS-IS and show that the perfor-

mance of this strategy is close to the optimal performance

under MFS-IS. We impose the following assumptions on the

model.

Assumption (A1a) In addition to (A1), for any k ∈ S and

k′ ∈ Sc, initial states (xi
1)i∈Nk are independent of (xj

1)j∈Nk′ .

Assumption (A1b) The primitive random variables

{xi
1, {wi

t}Tt=1}i∈N are independent. For any k, k ∈ K,
there exist finite matrices ckx and ckw such that

sup
i∈Nk

var(xi
1) ≤ ckx, sup

t≤T,i∈Nk

var(wi
t) ≤ ckw.

Assumption (A3) The dynamics {Ak
t , B

k
t , D

k
t , E

k
t }k∈K, cost

{Qk
t , R

k
t , }k∈K, P x

t and Pu
t , and covariance bounds

{ckx, ckw}k∈K do not depend on the sizes (|N 1|, . . . , |NK |) of

the sub-populations.

Since we are comparing the system performance under two

information structures, we use different notation for the two.

Under MFS-IS, the state and action of agent i are denoted by

xi
t and ui

t. Assume that ui
t is generated as per Theorem 1.

Under PMFS-IS, the state and action of agent i are denoted

by sit and vit. The dynamics are same as (5). In particular for

agent i of sub-population k ∈ K, si1 = xi
1 and

sit+1 = Ak
t s

i
t +Bk

t v
i
t +Dk

t s̄t + Ek
t v̄t + wi

t, (16)

where

s̄t = vec(s̄1t , . . . , s̄
K
t ), s̄kt = 〈(sit)i∈Nk〉,

v̄t = vec(v̄1t , . . . , v̄
K
t ), v̄kt = 〈(vit)i∈Nk〉.

Define a (mean-field) approximation process {zt}Tt=1 as

follows: zt = vec(z1t , . . . , z
K
t ), where for any k ∈ K,
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zkt ∈ R
dk

x ; the initial state z1 is given by zk1 is s̄k1 for k ∈ S
and is 0 for k /∈ S .8 The process evolves as:

zkt+1 =

{

s̄kt+1, k ∈ S,
Ak

t z
k
t + (Bk

t L̄
k
t +Dk

t + Ek
t L̄t)zt, k ∈ Sc,

(17)

where L̄t is as defined in Theorem 1. Note that the approxima-

tion process {zt}Tt=1 is adapted to the filtration {{s̄kt }k∈S}Tt=1

which is known at all agents. Therefore, at time t, zt can be

computed at all agents.

Now, consider the following certainty equivalence strategy

for PMFS-IS: for agent i of sub-population k, k ∈ K,

vit = L̆k
t (s

i
t − zkt ) + L̄k

t zt. (18)

The above strategy is similar to the optimal strategy for

MFS-IS (given by (12) in Theorem 1) except that the mean

field {s̄kt }k∈K has been replaced by its approximation zt.

For ease of exposition, let dx :=
∑

k∈K dkx and matrix H =
rows(H1, . . . , HK) be a binary matrix such that

Hk =

{

0dk
x
×dx

, k ∈ S,
1dk

x
×dx

, k ∈ Sc.

Let Ĵ denote the performance of strategy (18) and J∗ denote

the optimal performance under MFS-IS. Then, the difference

in performance Ĵ − J∗ is bounded. In particular, we have

Theorem 2 Assume (A1a), (A2), and (PMFS-IS). Then,

1) The performance loss is given by

Ĵ − J∗ = Tr(X̃1M̃1) +

T−1
∑

t=1

Tr(W̃tM̃t+1), (19)

where X̃1 = 12dx×2dx
⊗ [H ◦ var(x̄1)], W̃t =

12dx×2dx
⊗ [H ◦ var(w̄t)], and M̃1:T is the solution of

following Lyapunov equation:

M̃1:T = DLET(Ã1:T , Q̃1:T ), (20)

where

Ã =

[

Ã1
t −(1dx×dx

−H) ◦ Ã2
t

0 H ◦ Ã2
t

]

,

and Q̃t = diag(−Q̃1
t , Q̃

2
t ) where Ã1

t = Āt + B̄tL̄t,

Ã2
t = Āt + B̄tL̆t, Q̃

1
t = P x

t + Q̄t + L̄⊺

t (P
u
t + R̄t)L̄t,

Q̃2
t = P x

t +Q̄t+L̆⊺

t (P
u
t +R̄t)L̆t, and L̆t = diag(L̆1

t , . . . ,
L̆K
t ).

2) Let n = mink∈Sc(|N k|). Under (A1b) and (A3),

Ĵ − J∗ ∈ O
(

T

n

)

.

The result is proved in Section VI.

Remark 7 As the number of agents in each sub-population

k ∈ Sc, becomes large, the approximation error Ĵ − J∗ goes

to zero; therefore, PMFS-IS is as informative as MFS-IS.

Note that when the mean-field of all sub-populations are

shared, then S = K and, therefore, H is zero. Consequently,

8If the initial states are non-zero mean, then zk
1
= E(x̄k

1
) for k /∈ S.

the approximation error given by (19) is zero. Hence, the result

of Theorem 2 is consistent with that of Theorem 1.

Corollary 1 When the mean-field is not shared, i.e., S = ∅,

the approximation error Ĵ − J∗ is

Tr
(

var(x̄1)(M̃
2
1 −M̃1

1 )
)

+

T−1
∑

t=1

Tr(var
(

w̄t)(M̃
2
t+1−M̃1

t+1)
)

,

where M̃1
1:T and M̃2

1:T are the solutions of following two

decoupled Lyapunov equations:

M̃1
1:T = DLET(Ã

1
1:T , Q̃

1
1:T ), M̃2

1:T = DLET(Ã
2
1:T , Q̃

2
1:T ).

Proof: When S = ∅, H is 1dx×dx
; thus, Ãt is block

diagonal. Consequently, the Lyapunov equation (20) decouples

into the two smaller Lyapunov equations given above.

IV. SPECIAL CASES AND GENERALIZATIONS

In this section, we present two special cases and two

generalizations of Problem 1. Due to space limitations, we

only present the results for MFS-IS (i.e., the analogue of

Theorem 1); the results for PMFS (i.e., the analogue of

Theorem 2) may be derived in a similar manner.

A. Special case 1: major and minor agents

Suppose there exist M ⊆ K sub-populations with only 1
agent, i.e., |N k| = 1, k ∈ M. Then, for every k ∈ M,

x̄k
1 = xk

t . The rest of the dynamics and cost are the same

as in Section II-A. Since the dynamics are coupled through

the mean-field, the states of the agents of sub-populations M
directly influence the dynamics of all other agents and the

per-step cost. For this reason, such agents are called major

agents. A variation of the above model with a single major

agent was first introduced in [32] and other variations have

been investigated in [33]–[35].

For above model, result of Theorem 1 simplifies as follows.

Corollary 2 For any sub-population k ∈ K\M and minor

agent i ∈ N k, ui
t is given by (12). For any major agent i ∈

N k, k ∈ M, the control law is given by uk
t = L̄k

t x̄t.

Note that for k ∈ M, L̆k
t is not needed to compute uk

t ; so

we do not need a Riccati equation to compute M̆k
1:T .

B. Special case 2: no local controls

Suppose that for all k ∈ K, Bk
t = 0 and Rk

t = 0. Moreover

assume that there exists a vector θt = rows(θ1t , . . . , θ
K
t ), θkt ∈

R
dũ × R

du , k ∈ K, such that Ek
t = Ẽk

t θ
⊺

t for all k ∈ K and

Pu
t = θ

⊺

t P̃
u
t θt. In addition, let θkt

+
denote the right inverse

of θkt (i.e., θkt θ
k
t

+
= I

R
dũ ), which is assumed to exist. This

implies that the dynamics and cost are given as follows. Let

ũt := θ
⊺

t ūt =
∑

k∈K

θkt ū
k
t .

Then, for agent i ∈ N k of sub-population k ∈ K, we have

xi
t+1 = Ak

t x
i
t +Dk

t x̄t + Ẽk
t ũt + wi

t.
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At time t ∈ {1, . . . , T − 1}, the per-step cost is given by,

ct(xt,ut, x̄t, ũt) = x̄
⊺

t P
x
t x̄t + ũ

⊺

t P̃
u
t ũt

+
∑

k∈K

∑

i∈Nk

1

|N k| (x
i
t)

⊺

Qtx
i
t,

and t = T ,

cT (xT , x̄T ) = x̄
⊺

TP
x
T x̄T +

∑

k∈K

∑

i∈Nk

1

|N k| (x
i
T )

⊺

QTx
i
T .

Corollary 3 For the model described above, the optimal

control law is given as follows. For all k ∈ K and i ∈ N k,

ui
t = θkt

+
L̃k
t x̄

k
t .

where [L̃1
t , . . . , L̃

K
t ] =: L̄t is given as in Theorem 1 but with

B̄t replaced by B̃t = rows(Ẽ1
t , . . . , Ẽ

K
t ) and Pu

t replaced

by P̃u
t .

The proof is presented in Appendix B.

Remark 8 Note that for the model defined above, each agent

only needs to observe the mean-field of its sub-population

(rather than the mean-field of entire population). Thus, this

result is similar in spirit to [36, Theorem 1].

C. Generalization 1: tracking cost function

Consider a tracking problem in which we are given a

tracking signal {skt }Tt=1, skt ∈ R
dk

x for the mean-field of sub-

population k ∈ K and a tracking signal {rit}Tt=1, rit ∈ R
dk

x ,

for each agent i ∈ N k.

Define r̄kt := 〈(rit)i∈Nk〉, k ∈ K, r̄t := vec(r̄1, . . . , r̄
K
t ), and

st = vec(s1t , . . . , s
K
t ). The tracking cost is as follows. For

t ∈ {1, . . . , T − 1},

ct(xt,ut, x̄t, ūt) = (x̄t − st)
⊺

P x
t (x̄t − st) + ū

⊺

t P
u
t ūt

+
∑

k∈K

∑

i∈Nk

1

|N k|
[

(xi
t − rit)

⊺

Qk
t (x

i
t − rit) + (ui

t)
⊺
Rk

t u
i
t

]

,

and for t = T ,

cT (xT , x̄T ) = (x̄T − sT )
⊺

P x
T (x̄T − sT )

+
∑

k∈K

∑

i∈Nk

1

|N k| (x
i
T − riT )

⊺

Qk
T (x

i
T − riT ).

We assume that, in addition to MFS-IS specified in Sec-

tion II-A2, agent i also knows signals {rit, r̄t, st}Tt=1. The rest

of the model is the same as in Section II-A.

Theorem 3 Under (A1), (A2), and (MFS-IS), the optimal

strategy is unique and given by

ui
t = L̆k

t (x
i
t − x̄k

t ) + L̄k
t x̄t + F̆ k

t v
i
t + F̄ k

t v̄t, (21)

where the gains {L̆k
t , L̄

k
t }T−1

t=1 are obtained by the solution

of K + 1 Riccati equations defined in Theorem 1 and the

gains {F̆ k
t , F̄

k
t }T−1

t=1 and the correction signals {vit, v̄t}Tt=1 are

given as follows. Let {M̆k
t }Tt=1 and {M̄t}Tt=1 be the solutions

of K + 1 Riccati equations defined in Theorem 1. For t ∈
{1, . . . , T − 1}, the gains {F̆ k

t , F̄
k
t }Tt=1 are given by

F̆ k
t =

(

(Bk
t )

⊺

M̆k
t+1B

k
t +Rk

t

)−1

Bk
t

⊺

,

and rows(F̄ 1
t , . . . , F̄

K
t ) := F̄t, where

F̄t =
(

B̄
⊺

t M̄t+1B̄t + R̄t + Pu
t

)−1
B̄

⊺

t .

The correction signals {vit, v̄t}Tt=1 are given recursively as

follows: for t = T ,

viT = Qk
T r

i
T , v̄T = Q̄T r̄T + P x

T sT , (22)

and for t ∈ {T − 1, . . . , 1},

vit = (Ak
t +Bk

t L̆
k
t )

⊺

vit+1 +Qk
t r

i
t, (23)

v̄t = (Āt + B̄tL̄t)
⊺

v̄t+1 + Q̄tr̄t + P x
t st. (24)

The proof is presented in Appendix C. To implement the

optimal control strategies:

• all agents must compute L̄1:T−1 and F̄1:T−1 by solving

Riccati equation (14) and compute the global correction

signal v̄1:T by solving backward equations (22) and (24),

• agents of sub-population k must compute L̆k
1:T−1 and

F̆ k
1:T−1 by solving Riccati equation (13),

• an individual agent i of sub-population k must compute

a local correction signal vi1:T by solving backward equa-

tions (22) and (23).

Then, an individual agent i of sub-population k, upon observ-

ing the local state xi
t and the global mean-field x̄t, chooses

its local control action according to (21).

D. Generalization 2: weighted mean-field

Suppose there are weights (ai, λi, bi) associated with each

agent i ∈ N such that ai, λi ∈ R and bi ∈ R>0. For each sub-

population k ∈ K define the weighted mean-field of states and

actions as follows.

x̄k,λ
t =

1

|N k|
∑

i∈Nk

λixi
t, ūk,λ

t =
1

|N k|
∑

i∈Nk

λiui
t,

x̄
λ
t = vec(x̄1,λ, . . . , x̄K,λ), ū

λ
t = vec(ū1,λ, . . . , ūK,λ).

Also, define āk,λ = 1
|Nk|

∑

i∈Nk λiai. For sub-population k ∈
K, the state of agent i ∈ N k evolves as follows.

xi
t+1 = Ak

t x
i
t +Bk

t u
i
t + ai(Dk

t x̄
λ
t + Ek

t ū
λ
t ) + wi

t.

The per-step cost is given by

ct(xt,ut, x̄
λ
t , ū

λ
t ) = (x̄λ

t )
⊺

P x
t x̄

λ
t + (ūλ

t )
⊺

Pu
t ū

λ
t

+
∑

k∈K

∑

i∈Nk

bi

|N k|
[

(xi
t)

⊺

Qk
t x

i
t + (ui

t)
⊺

Rk
t u

i
t

]

,

and the terminal cost is given by

cT (xT , x̄
λ
T ) = (x̄λ

T )
⊺

P x
T x̄

λ
T +

∑

k∈K

∑

i∈Nk

bi

|N k|
[

(xi
T )

⊺

Qk
Tx

i
T

]

.

Such models arise in applications where the interaction be-

tween two homogeneous agents is not symmetric but depends

on their weights. For example, in wireless networks, the

interference caused at the base-station depends on the distance

of the agents from the base-station.

In the above model, agents are not partially exchangeable.

Nonetheless, we are able to explicitly identify optimal control

strategies under the following assumptions.
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Assumption (A4) For each sub-population k ∈ K and each

agent i ∈ N k, aibi = λiāk,λ.

Given a sub-population k ∈ K, examples of weights that

satisfy (A4) are: for all i ∈ N k, (i) ai = 0, (ii) ai = 1 and

bi = λi, (iii) ai = λi, bi = 1, and 1
|Nk|

∑

i∈Nk λi = 1. To

simplify the exposition, define µk := 2− 1
|Nk|

∑

i∈Nk

(λi)2

bi
.

Assumption (A2a) For every t, P x
t , Pu

t , Qk
t , and Rk

t are

symmetric matrices that satisfy

Qk
t ≥ 0, ∀k ∈ K, diag(µ1Q1

t , . . . , µ
KQK

t ) + P x
t ≥ 0,

Rk
t > 0, ∀k ∈ K, diag(µ1R1

t , . . . , µ
KRK

t ) + Pu
t > 0.

Note that if µk = 1, (A2a) reduces to (A2). Each agent has

mean-field sharing information structure, i.e., agent i ∈ N k

of sub-population k ∈ K observes the local state xi
t and the

weighted mean-field x̄λ
t .

Theorem 4 Under (A1), (A2a), (A4), and (MFS-IS), the op-

timal strategy is unique and given by

ui
t = L̆k

t

(

xi
t −

λi

bi
x̄k,λ
t

)

+
λi

bi
L̄k
t x̄

λ
t ,

where the gains {L̆k
t , L̄

k
t }T−1

t=1 are obtained by the solution of

K + 1 Riccati equations defined in Theorem 1 when Āt, B̄t,

Q̄t, and R̄t are replaced by

Āt := diag(A1
t , . . . , A

K
t ) + rows(ā1,λD1

t , . . . , ā
K,λDK

t ),

B̄t := diag(B1
t , . . . , B

K
t ) + rows(ā1,λE1

t , . . . , ā
K,λEK

t ),

Q̄t := diag(µ1Q1
t , . . . , µ

KQK
t ),

R̄t := diag(µ1R1
t , . . . , µ

KRK
t ).

The proof is presented in Appendix D.

Remark 9 The optimal strategy depends on the weights and,

even within a sub-population, the gains of the mean-field terms

are different for different agents.

Remark 10 If the dynamics of the agents are decoupled, i.e.,

ai = 0 for all agents, then the results of Theorem 4 are similar

to the model with soft constraints discussed in [13].

Note that if ai = bi = λi = 1 for all agents, then

the weighted mean-field model reduces to the basic model

described in Proposition 1 and the result of Theorem 4 reduces

to that of Theorem 1.

V. PROOF OF THEOREM 1

We start with the model presented in Proposition 1. The

proof proceeds in three steps.

• Step 1: We use a coordinate transformation to construct

a system that is isomorphic to the original system.

• Step 2: We construct an auxiliary system which is system

of Step 1 with classical information structure (i.e., all

decisions are made a single agent).

• Step 3: We show that the optimal control laws of the

auxiliary system can be implemented using MFS-IS. A

fortiori, they are also optimal for MFS-IS.

A. Step 1: A coordinate transformation

Define x̆i
t = xi

t − x̄k
t and ŭi

t = ui
t − ūk

t and con-

sider the following coordinate transformation T of the state

and action spaces: T vec
(

(xi
t)i∈N ) = vec

(

(x̆i
t)i∈N , x̄t

)

and

T vec
(

(ui
t)i∈N ) = vec

(

(ŭi
t)i∈N , ūt

)

. Under this transforma-

tion, the dynamics (5) may be written as

x̆i
t+1 = Ak

t x̆
i
t +Bk

t ŭ
i
t + w̆i

t, (25)

where w̆i
t := wi

t − w̄k
t and w̄k

t := 〈(wi
t)i∈Nk〉 and

x̄t+1 = Ātx̄t + B̄tūt + w̄t, (26)

where w̄t := vec(w̄1
t , . . . , w̄

K
t ) and Āt and B̄t are defined as

in Theorem 1.

The per-step cost ct(xt,ut, x̄t, ūt) and terminal cost

cT (xT , x̄T ) can also be written in terms of the transformed

variables. For that matter, we need the following result that

is similar to the Parallel-Axis Theorem (or Huygens-Steiner

Theorem) in mechanics [37]:

Lemma 1 For any x = vec(x1, . . . , xN ) and x̄ = 〈x〉, let

x̆i = xi − x̄, i ∈ {1, . . . , N}. Then, for any matrix Q of

appropriate dimension,

1

N

N
∑

i=1

(xi)
⊺

Qxi =
1

N

N
∑

i=1

(x̆i)
⊺

Qx̆i + x̄
⊺
Qx̄.

Proof: The result follows from elementary algebra and

the observation that
∑N

i=1 x̆
i = 0.

An immediate consequence of Lemma 1 is the following:

Corollary 4 For time t, t ∈ {1, . . . , T}, there exist functions

{c̆kt }k∈K and c̄t such that

ct(xt,ut, x̄t, ūt) = c̄t(x̄t, ūt) +
∑

k∈K

∑

i∈Nk

c̆kt (x̆
i
t, ŭ

i
t), (27)

where

c̄t(x̄t, ūt) = x̄
⊺

t (Q̄t + P x
t )x̄t + ū

⊺

t (R̄t + Pu
t )ūt,

c̆kt (x̆
i
t, ŭ

i
t) =

1

|N k|
[

(x̆i
t)

⊺

Qk
t x̆

i
t + (ŭi

t)
⊺

Rk
t ŭ

i
t

]

,

and for t = T,

cT (xT , x̄T ) = c̄T (x̄T ) +
∑

i∈Nk,k∈K

c̆kT (x̆
i
T ), (28)

where

c̄T (x̄T ) = x̄
⊺

T (Q̄T + P x
T )x̄T , c̆kT (x̆

i
T ) =

1

|N k| (x̆
i
T )

⊺

Qk
T x̆

i
T .

Since the transformation T is an isomorphism, the trans-

formed model with dynamics (25) and (26) and the per-step

cost (27) and (28) is equivalent to the original model in

Proposition 1, irrespective of the information structure.
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B. Step 2: An auxiliary system

Consider an auxiliary system with state x̊t =
vec((x̆i

t)i∈N , x̄t) and action ůt = vec((ŭi
t)i∈N , ūt) (which is

same as the transformed model of Step 1). There is a single

centralized agent that chooses ůt based on the observations.

In particular, the centralized agent observes x̊t and chooses

ůt according to

ůt = g̊t(̊x1:t, ů1:t−1). (29)

The performance of strategy g̊ := (̊g1, . . . , g̊T ) is given by

J̊ (̊g) = E
g̊

[ T−1
∑

t=1

ct(xt,ut, x̄t, ūt) + cT (xT , x̄T )

]

, (30)

where the expectation is with respect to the measure induced

on all system variables by the choice of strategy g̊. We are

interested in the following optimization problem.

Problem 2 In the auxiliary system, find strategy g̊∗ that

minimizes (30), i.e.,

J̊∗ := J̊ (̊g∗) = inf
g̊

J̊ (̊g),

where the infimum is taken over all strategies of the form (29).

Let J∗ and J̊∗ denote the optimal cost for Problem 1 and

Problem 2, respectively. Since the per-step cost is the same in

both cases, but Problem 2 is centralized, we have that

J∗ ≥ J̊∗.

We identify the optimal control laws for the auxiliary system

and show that these laws can be implemented in, and therefore

are optimal for, the original decentralized system.

C. Step 3: The Optimal Solution of the Auxiliary System

The auxiliary system is a stochastic linear quadratic system.

So, the optimal control laws are linear and the optimal gains

are given by the solution of an appropriate Riccati equation.

However, the dimension of the state x̊t, and therefore the di-

mension of the Riccati equation, increases with the number of

agents. To overcome this challenge, we present an alternative

approach that involves solving K + 1 Riccati equations that

do not depend on the number of agents.

Since the auxiliary system is a stochastic linear quadratic

system, the certainty equivalence principle [38, Theorem 6.1]

holds. Therefore, the optimal control law is identical to the

control law of the corresponding deterministic system, whose

dynamics are given as follows: for k ∈ K and i ∈ N k

x̆i
t+1 = Ak

t x̆
i
t +Bk

t ŭ
i
t, x̄t+1 = Ātx̄t + B̄tūt,

and whose per-step cost is c̊t(̊xt, ůt) given by Corollary 4.

Under (A2), the deterministic centralized linear quadratic

system is strictly convex; hence, the solution is unique [38,

Theorem 4.1].

Note that this system consists of (N + 1) components:

N components with state x̆i
t and action ŭi

t, i ∈ N , and

one component with state x̄t and action ūt. The first N
components are split into K classes of identical components—

one for each sub-population. The components have decoupled

dynamics and decoupled cost. Thus, the optimal control law

of each class may be identified separately. In particular, from

[38, Theorem 4.1], we have that

Theorem 5 The optimal control strategy of the auxiliary

system (i.e., Problem 2) is unique and given by

ūt = L̄tx̄t and for k ∈ K, i ∈ N k, ŭi
t = L̆k

t x̆
i
t,

where the gains {L̆k
t , L̄t}T−1

t=1 are given as in Theorem 1.

Now, we transform the optimal centralized solution, given

by Theorem 5, back to the original model (by taking the

inverse of coordinate transformation used in Step 1), to get

ui
t = ŭi

t + ūk
t = L̆k

t (x
i
t − x̄k

t ) + L̄k
t x̄t.

Note that the above control laws are implementable under

MFS-IS. Therefore, the solution of Problem 2 coincides with

the solution of Problem 1 with MFS-IS.

VI. PROOF OF THEOREM 2

A. Preliminary results

We use the same transformation as Step 1 in Section V-A.

In particular, for any k ∈ K and i ∈ N k, define x̆i
t := xi

t− x̄k
t ,

ŭi
t := ui

t− ūk
t , s̆it := sit− s̄kt and v̆it := vit− v̄kt . Then, we have

Lemma 2 For all t, s̆it = x̆i
t and ŭi = v̆it. Consequently,

Ĵ − J∗ =

T
∑

t=1

[c̄t(s̄t, v̄t)− c̄t(x̄t, ūt)] . (31)

Proof: We prove the first part by induction. Note that

x̆i
1 = s̆i1 and v̆i1 = L̆k

1 s̆
i
1 = L̆k

1 x̆
i
1 = ŭi

1. This forms the basis

of induction. Now assume that s̆it = x̆i
t and v̆it = ŭi

t and

consider time t+ 1. Then,

s̆it+1 = Ak
t s̆

i
t +Bk

t v̆
i
t + w̆i

t = Ak
t x̆

i
t +Bk

t ŭ
i
t + w̆i

t = x̆i
t+1.

Moreover, v̆it+1 = L̆k
t+1s̆

i
t+1 = L̆k

t+1x̆
i
t+1 = ŭi

t+1. Thus, the

result is true by induction. Equation (31) immediately follows

from the first part and Corollary 4.

Next we simplify (31) in terms of the following relative

errors: For any k ∈ K, define

ζkt = x̄k
t − zkt and ξkt = s̄kt − zkt .

Let ζt = vec(ζ1t , . . . , ζ
K
t ) and ξt = vec(ξ1t , . . . , ξ

K
t ). For ease

of exposition, let vector h = vec(h1, . . . , hK) be binary such

that hk = 0dk
x
×1 if k ∈ S and hk = 1dk

x
×1 if k ∈ Sc.

Lemma 3 Let Ãt be defined as in Theorem 2. Then, ζ1 =
h ◦ x̄1 and ξ1 = h ◦ x̄1 and

[

ζt+1

ξt+1

]

= Ãt

[

ζt

ξt

]

+

[

h ◦ w̄t

h ◦ w̄t

]

.

Proof: From (16) and (18), we get

s̄kt+1 = Ak
t s̄

k
t +Bk

t v̄
k
t +Dk

t s̄t + Ek
t v̄t + w̄k

t ,

v̄kt = L̆k
t (s̄

k
t − zkt ) + L̄k

t zt, (32)

where w̄k
t := 〈(wi

t)i∈Nk〉. Write (32) in a vectorized form,

s̄t+1 = Āts̄t + B̄tv̄t + w̄t, v̄t = L̆tξt + L̄tzt,
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where w̄t = vec(w̄1
k, . . . , w̄

K
t ). From Theorem 1, we can write

the dynamics under the optimal strategy as follows

x̄k
t+1 = Ak

t x̄
k
t + (Bk

t L̄
k
t +Dk

t + Ek
t L̄t)x̄t + w̄k

t ,

ūk
t = L̄k

t x̄t,

and in a vectorized form,

x̄t+1 = (Āt + B̄tL̄t)x̄t + w̄t, ūt = L̄tx̄t.

Thus, the dynamics of the relative errors can be written as

follows. If k ∈ S ,

ζkt+1 = Ak
t ζ

k
t + (Bk

t L̄
k
t +Dk

t + Ek
t L̄t)ζt

− (Ak
t +Bk

t L̆
k
t )ξ

k
t − (Dk

t + Ek
t L̆t)ξt,

ξkt+1 = 0,

and if k ∈ Sc,

ζkt+1 = Ak
t ζ

k
t + (Bk

t L̄
k
t +Dk

t + Ek
t L̄t)ζt + w̄k

t ,

ξkt+1 = (Ak
t +Bk

t L̆
k
t )ξ

k
t + (Dk

t + Ek
t L̆t)ξt + w̄k

t .

Combining these, gives the result of the Lemma.

Let Ft = {s̄k1:t}k∈S be the history of the mean-fields of

sub-populations S that are observed.

Lemma 4 For all t, E[ζt|Ft] = E[ξt|Ft] = 0.

Proof: If k ∈ S , ζk1 = ξk1 = 0 and if k ∈ Sc,
ζk1 = ξk1 = x̄k

1 , and from (A1a), E[x̄k
1 |F1] = E[x̄k

1 ] = 0.

Therefore, E[ζ1|F1] = E[ξ1|F1] = 0. Thus, from Lemma 3

and E[w̄t|Ft] = 0, we get that E[ζt|Ft] = E[ξt|Ft] = 0.

Lemma 5 zt is measurable with respect to Ft, therefore,

E[zt|Ft] = zt.

Proposition 2 The relative loss is given

Ĵ − J∗ = E

[

T
∑

t=1

[ζt ξt]
⊺
Q̃t[ζt ξt]

]

.

Proof: Recall that c̄t(x̄t, ūt) = x̄
⊺

t (Q̄t+P x
t )x̄t+ū

⊺

t (R̄t+
Pu
t )ūt. The proof follows immediately from (31) and the

following observation:

Lemma 6 Let Q̂t := Q̄t + P x
t and R̂t := R̄t + Pu

t . Then,

E[s̄
⊺

t Q̂ts̄t − x̄
⊺

t Q̂tx̄t|Ft] = E[ξ
⊺

t Q̂tξt − ζ
⊺

t Q̂tζt|Ft],

and

E[v̄
⊺

t R̂tv̄t − ū
⊺

t R̂tūt|Ft] = E[ξ
⊺

t L̆
⊺

t R̂tL̆tξt|Ft]

− E[ζ
⊺

t L̄
⊺

t R̂tL̄tζt|Ft].

Therefore, the proof of Proposition 2 is complete.

Proof of Lemma 6:

1) Substituting s̄t = ξt + zt and x̄t = ζt + zt, we get

E[s̄
⊺

t Q̂ts̄t − x̄
⊺

t Q̂tx̄t|Ft]

(a)
= E[ξ

⊺

t Q̂tξt − ζ
⊺

t Q̂tζt|Ft] + 2E[ξ
⊺

t Q̂tzt|Ft]

− 2E[ζ
⊺

t Q̂tzt|Ft]

= E[ξ
⊺

t Q̂tξt − ζ
⊺

t Q̂tζt|Ft],

where the last two terms in (a) are zero by Lemmas 4

and 5.

2) Substituting v̄t = L̆tξt+L̄tzt and ūt = L̄tx̄t = L̄t(ζt+
zt), we get

E[v̄
⊺

t R̂tv̄t − ū
⊺

t R̂tūt|Ft]

(b)
= E[ξ

⊺

t L̆
⊺

t R̂tL̆tξt − ζ
⊺

t L̄
⊺

t R̂tL̄tζt|Ft]

+ 2E[ξ
⊺

t L̆
⊺

t R̂tL̄tzt|Ft]− 2E[ζ
⊺

t L̄tR̂tL̄tzt|Ft]

= E[ξ
⊺

t L̆
⊺

t R̂tL̆tξt − ζ
⊺

t L̄
⊺

t R̂tL̄tζt|Ft],

where the last two terms in (b) are zero by Lemmas 4

and 5.

B. Proof of Theorem 2

To prove part 1, note that Ĵ − J∗ is the expected total

quadratic cost (given by Proposition 2) of a linear (uncon-

trolled) system (given by Lemma 3). Thus, Ĵ−J∗ is given by

(19) where M̃1:T is the solution of the Lyapunov equation (20).

Note that the variance of the initial state and noises in

Lemma 3 are given as follows:

var(h ◦ x̄1, h ◦ x̄1) = 12dx×2dx
⊗ [H ◦ var(x̄1)] =: X̃1,

var(h ◦ w̄t, h ◦ w̄t) = 12dx×2dx
⊗ [H ◦ var(w̄t)] =: W̃t.

To prove part 2 of Theorem 2, first observe that due to

(A3), matrices Ãt and Q̃t do not depend on (|N 1|, . . . , |NK |);
therefore, neither does M̃1:T . Thus the only dependence on the

size of the sub-population is due to X̃1 and W̃t. Under (A1b)

and (A3), for any sub-population k ∈ K,

var(x̄k
1) =

1

|N k|2
∑

i∈Nk

var(xi
1) ≤

ckx
n
,

var(w̄k
t ) =

1

|N k|2
∑

i∈Nk

var(wi
t) ≤

ckw
n
.

From (A1b), var(x̄1) = diag(var(x̄1
1), . . . , var(x̄

K
1 )) and

var(w̄t) = diag(var(w̄1
t ), . . . , var(w̄

K
t )). Thus,

X̃1 ≤ 1

n
12dx×2dx

⊗
[

H ◦ diag(c1x, . . . , cKx )
]

,

W̃t ≤
1

n
12dx×2dx

⊗
[

H ◦ diag(c1w, . . . , cKw )
]

.

Thus, X̃1 and W̃t are O( 1
n
). From (19), we have

|Ĵ − J∗| ≤
∣

∣

∣
Tr

(

X̃1M̃1

)∣

∣

∣
+

T−1
∑

t=1

∣

∣

∣
Tr

(

W̃t M̃t+1

)∣

∣

∣
,

where each of above absolute values is O( 1
n
). In particular,

since X̃1 and W̃t are O( 1
n
) and M̃1:T do not depend on n,

|Tr(X̃1M̃1|) and |Tr(W̃tM̃t+1)| are O( 1
n
).

VII. INFINITE HORIZON

The results presented in Sections III and IV general-

ize to infinite horizon setup in a natural manner. As-

sume that the model is time-invariant, i.e., the ma-

trices {Ak
t , B

k
t , D

k
t , E

k
t , Q

k
t , R

k
t , P

x
t , P

u
t } and covariances

{Σ̆k
t , Σ̄t, Ξ̆

k
t , Ξ̄t} (defined in Theorem 1) do not depend on

time; hence, we remove the subscript t. The rest of the model

is as same as that in Section II-A.
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Consider the infinite horizon discounted cost and the infinite

horizon long-term average setups as follows:

Problem 3 Given discount factor β ∈ (0, 1), find a strategy g

that minimizes the following cost:

Jβ(g) = (1− β)Eg

[ ∞
∑

t=1

βt−1c(xt,ut, x̄t, ūt)

]

,

where the expectation is with respect to the measure induced

on all the system variables by the choice of strategy g.

Problem 4 Find a strategy g that minimizes the following

cost:

J1(g) = lim
T→∞

E
g

[

1

T

T
∑

t=1

c(xt,ut, x̄t, ūt)

]

,

where the expectation is with respect to the measure induced

on all the system variables by the choice of strategy g.

Assumption (A5) For each sub-population k ∈ K,

(
√
βAk,

√
βBk) are stabilizable and (

√
βAk,

√

Qk) are de-

tectable. In addition, for Āt and B̄t defined in Theorem 1,

(
√
βĀ,

√
βB̄) are stabilizable and (

√
βĀ,

√

Q̄+ P x) are

detectable.

A. Exact solution for MFS-IS

The optimal strategy under MFS-IS is as follows.

Theorem 6 Under (A1), (A2), (A5), and (MFS-IS), the op-

timal strategy for Problems 3 and 4 are linear and time

homogeneous and are given by

ui
t = L̆k(xi

t − x̄k
t ) + L̄k

x̄t, (33)

where the gains {L̆k, L̄k} are obtained by the solution of K+1
algebraic Riccati equations given below: one for computing

each L̆k, k ∈ K, and one for L̄ := rows(L̄1, . . . , L̄K). Let

matrices Ā, B̄, Q̄, and R̄ be defined as in Theorem 1; then,

given β ∈ (0, 1],

L̆k = −
(

Bk
⊺

M̆kBk + β−1Rk
)−1

Bk
⊺

M̆kAk,

L̄ = −
(

B̄
⊺
M̄B̄ + β−1(R̄+ Pu)

)−1
B̄

⊺
M̄Ā,

where M̆k and M̄ are the solutions of the following algebraic

Riccati equations:

M̆k = DAREβ(A
k, Bk, Qk, Rk),

M̄ = DAREβ(Ā, B̄, Q̄+ P x, R̄+ Pu).

In addition, the optimal performance is given by

J∗
β = (1− β)

[

∑

k∈K

Tr
(

Ξ̆kM̆k
)

+Tr(Ξ̄M̄)

]

+

[

∑

k∈K

Tr
(

Σ̆kM̆k
)

+Tr(Σ̄M̄)

]

,

where Σ̆k, Σ̄, Ξ̆k, and Ξ̄ are defined as in Theorem 1.

Proof: The proof follows along the same lines of the

proof of Theorem 1. We construct an auxiliary system as

in Section V, which consists of |N | + 1 components with

decoupled cost and dynamics coupled only through the noise.

Since the costs are infinite-horizon discounted and infinite-

horizon long run average, the optimal solution is given by

appropriate algebraic Riccati equations.9 Under (A2) and (A5),

these Riccati equations have a unique solution [38, Theorem

9.2].

B. Approximate solution for PMFS-IS

In this section, we propose an approximately optimal

strategy for Problems 3 and 4 under PMFS-IS. Let L̆ =
diag(L̆1, . . . , L̆K) denote a diagonal matrix with diagonal

terms of L̆k defined as in Theorem 6. We impose the following

assumption.

Assumption (A6)
√
β(Ā+ B̄L̆) is Hurwitz matrix.

Let Ĵβ denote the performance of strategy (33) where x̄t is

replaced by zt in (17) and J∗
β denote the optimal performance

under MFS-IS. Then, the difference in performance Ĵβ − J∗
β

is bounded. In particular, we have the following

Theorem 7 Assume (A1a), (A2), (A5), (A6) and (PMFS-IS).

Then, for β ∈ (0, 1], we have

1) The performance loss is given by

Ĵβ − J∗
β = (1− β) Tr

(

X̃1M̃
)

+Tr
(

W̃M̃
)

, (34)

where X̃1 and W̃ are time-homogeneous and defined

as in Theorem 2 and M̃ is the solution of following

algebraic Lyapunov equation:

M̃ = DALEβ(Ã, Q̃), (35)

where Ã and Q̃ are defined as in Theorem 2 and L̆ =
diag(L̆1, . . . , L̆K) and L̄ are computed as in Theorem 6.

2) Let n = mink∈Sc(|N k|). Under (A1b) and (A3),

Ĵβ − J∗
β ∈ O

(

1

n

)

.

Proof: The proof follows along the same lines of the proof

of Theorem 2. In particular, under (A5) and (A6),
√
βÃ of

Proposition 2 is Hurwtiz; hence, the performance loss may be

computed by the associated algebraic Lyapunov equation given

by (35). Note that even though Q̃ is not positive semi-definite,

the algebraic Lyapunov equation has a solution [39]. The proof

of part 2 of Theorem 7 follows from (34) and observation

that (i) M̃ given by (35) does not depend on n due to (A3);

(ii) (X̃1, W̃ ) are O(1/n) due to (A1b).

Remark 11 Assumption (A6) is always satisfied if Dk
t = 0

and Ek
t = 0 for all k ∈ K. In this case,

√
β(Ā+ B̄L̆) is

diag(
√

β(A1 +B1L̆1), . . . ,
√

β(AK +BKL̆K)),

where each of the diagonal terms are Hurwitz by definition

of L̆k given in Theorem 6.

9Note that an infinite-horizon discounted problem with 4-tuple
(A,B,Q,R) and discount factor β is equivalent to an undiscounted
problem with 4-tuple (

√
βA,

√
βB,Q,R).
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VIII. NUMERICAL EXAMPLE

To illustrate our results, we consider an example that is

motivated by demand response in power systems. In demand

response, the volatility in renewable generation is compensated

by making small changes in the demand of a large number

of loads. We model the load dynamics according to a model

proposed in [40], but consider a different per-step cost.

Consider a population N of space heaters that can be

partitioned into K disjoint sub-populations N k, k ∈ K :=
{1, . . . ,K}. Each sub-population corresponds to a particular

type of space heater that have similar physical characteristics

such time response and nominal temperature. For space heater

i, i ∈ N , the state xi
t denotes the room temperature at time t.

Consider a nominal temperature xk
nom for sub-population k,

k ∈ K, and let uk
nom be the control input needed to maintain

the room temperature at xk
nom . Following [40], we linearize

the dynamics of sub-population k around xk
nom , i.e.,

xi
t+1 − xk

nom = ak(xi
t − xk

nom) + bkui
t + wi

t,

where ui
t is the control input in addition to uk

nom and wi
t is

a random disturbance. We assume uk
nom is large enough such

that (ui
t + uk

nom) is positive.

Let xi
des denote the desired temperature of user i.

It is assumed that the mean desired temperature

x̄des= vec(x̄1
des , . . . , x̄

K
des) is known to everyone (e.g.,

independent system operator (ISO) could compute it and

broadcast the mean value to everyone or it could be computed

in a distributed manner using a consensus algorithm). For the

purpose of demand response, time is divided into epochs of

length T . At the beginning of each epoch, a central authority

such as an ISO generates a reference mean temperature mref

and broadcasts it to all users.

During an epoch, all users collectively minimize the total

expected cost E[
∑T

t=1 ct], where the per-step cost ct is given

by

1

|N |
∑

i∈N

[

q(xi
t − xi

des)
2 + rui

t

2
]

+
t

T
p(mt −mref )

2,

where mt =
(
∑

i∈N xi
t

)

/|N |. The rationale for the per-

step cost is that we penalize deviations from the desired

temperature (which corresponds to the user’s comfort level),

the control effort, and deviation of the mean temperature from

the reference prescribed by the ISO. The weight t
T

is so that

we linearly add more weight to meeting global preference.

The above problem is an optimal tracking problem and the

optimal strategy is given by Theorem 3. As an example, we

consider the following values of the parameters: K = 2,

p = 30, q = 2, r = 50, xi
des = xi

1 ∼ Normal(20, 3),
wi

t ∼ Normal(0, 0.01), and

|N 1| = 40, a1 = 0.5, b1 = 1.5, x1
nom = 20,

|N 2| = 100, a2 = 0.8, b2 = 1.0, x2
nom = 20.

and consider three epochs. In the first epoch, 1 ≤ t ≤ 50,

there is no reference signal and the space heaters are operating

around their local set temperatures; in the second epoch, 50 <
t ≤ 150, mref = 21; in the third epoch, 150 < t ≤ 250,

mref = 19. The resultant trajectories of a subset of the users

are shown in Fig. 1.
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re

Fig. 1. Demand response with a population of 140 space heaters consisting
of two sub-populations of size 40 and 100. In the initial phase, 1 ≤ t ≤ 50,
the system is uncontrolled. In the first epoch 50 < t ≤ 150, the system tracks
a mean reference temperature of mref = 21; in the second epoch 150 < t ≤
250, the system tracks a mean reference temperature of mref = 19. The thin
lines show the local temperature of 20 out of the 140 space heaters, where
blue lines corresponds to the first sub-population and red lines correspond to
the second sub-population. The thick black line shows the mean-temperature
achieved by the optimal strategy.

IX. CONCLUSION

We presented team optimal control of a decentralized system

with partially exchangeable agents. Partial exchangeability

implies that such a system is equivalent to one where the

dynamics and the cost are coupled only through the mean-

field. Our two main results are as follows. First, when the mean

field is observed by all agents (the MFS information structure),

the linear control laws are optimal and the corresponding

gains are computed by solving K + 1 Riccati equations,

where K is the number of sub-populations. The dimensions

of these Riccati equations are independent of the size of sub-

populations; consequently, the solution complexity depends

only on the number K of sub-populations (rather than the

size of the entire population). Second, when the mean-field of

a (possibly empty) subset of sub-populations is observed by

all agents (the PMFS information structure), a linear control

law based on certainty equivalence is approximately optimal.

An important practical implication of these results is that

they do not suffer from the curse of dimensionality. In fact,

under assumption (A3), the solution does not even depend on

the number of agents and the optimal gains can be computed

without being aware of the size of each sub-population.

Consequently, the solution methodology generalizes to the

setup where the agents in a sub-population arrive and depart

according to an exogenous process (e.g. number of electric

vehicles plugged in for charging in smart grids).

The raison d’etre for investigating decentralized systems is

that it is not possible—either physically or economically—to

send all the state observation to a centralized controller. We

show that when agents are partially exchangeable, we may

circumvent the conceptual difficulties of decentralized control

and achieve the centralized performance by sharing only the

mean-field. Moreover, in view of the results of PMFS-IS, one

may even decide not to share the mean-field of large sub-

populations because there is only a small loss in performance

in using the approximate value of the mean-field instead.

Throughout this paper, we assumed that when the mean-
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field is observed, it is observed without noise. In practice

(especially if the mean-field is computed using a consensus

algorithm), the mean-field will be observed with noise (and

the noise will be different across agents). Our results show

that if all sub-populations are large, such an observation noise

will not matter. (In fact, the agents may completely ignore

the mean-field observations and use the approximate values

instead). However, if some of the sub-populations are small,

the solution approach is not obvious. In particular, in the

special case when all sub-populations have one agent, the

problem reduces to the general decentralized control problem

with non-classical information structure. Identifying a solution

methodology for this general case remains a challenging

research direction.
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APPENDIX

A. Proof of Proposition 1

Let Ai,j
t denote the (i, j)-th block of matrix At. We use

a similar notation for other matrices as well. Fix a sub-

population k, k ∈ K. If we exchange agents i, j ∈ N k, then

property 2 of exchangeability implies that Ai,i
t = Aj,j

t and

for any other agent n ∈ N , Ai,n
t = Aj,n

t and An,i
t = An,j

t .

(Similar relationships hold for Bt as well). Property 3 implies

that Qi,i
t = Qj,j

t , Qi,n
t = Qj,n

t , and Qn,i
t = Qn,j

t . (Similar

relationships hold for Rt as well). Define the following:

• For i, j ∈ N k, Ai,i
t = Aj,j

t and Bi,i
t = Bj,j

t . Denote these

by akt and bkt , respectively.

• For i, j ∈ N k and n,m ∈ N l, l 6= k,Ai,n
t = Aj,m

t and

Bi,n
t = Bj,m

t . Denote these by dk,lt and ek,lt , respectively.

• For i, j ∈ N k, Qi,i
t = Qj,j

t and Ri,i
t = Rj,j

t . Denote these

by qkt and rkt , respectively.

• For i, j ∈ N k and n,m ∈ N l, l 6= k,Qi,n
t = Qj,m

t

and Ri,n
t = Rj,m

t . Denote these by px,k,lt and pu,k,lt ,

respectively.
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Now, consider the dynamics according to (2), the dynamics of

agent i of sub-population k can be written as

xi
t+1 = Ai·xt +Bi·ut + wi

t, (36)

where Ai· and Bi· denote the rows corresponding to the ith
block of At and Bt. Note that

Ai·xt = Ai,i
t xi

t +
∑

j∈Nk,j 6=i

Ai,j
t xj

t +
∑

l∈K,l 6=k

∑

n∈N l

Ai,nxn
t

= akt x
i
t + dk,kt

∑

j∈Nk,j 6=i

xj
t +

∑

l∈K,l 6=k

dk,lt

∑

n∈N l

xn
t

= akt x
i
t + dk,kt (|N k|x̄k

t − xi
t) +

∑

l∈K,l 6=k

dk,lt |N l|x̄l
t

=: Ak
t x

i
t +

∑

l∈K

Dk,l
t x̄l

t, (37)

where Ak
t = akt − dk,kt and Dk,l

t = |N l|dk,lt . By a similar

algebra, we can define Bk
t and Ek,l

t such that

Bi·
t ut = Bk

t u
i
t +

∑

l∈K

Ek,l
t ūl

t, (38)

where Bk
t = bkt − ek,kt and Ek,l

t = |N l|ek,lt . Substituting (37)

and (38) in (36), we get (5). Now consider the per-step cost

given by (3). Note that

xt
⊺
Qtxt =

∑

k∈K

∑

l∈K

∑

i∈Nk

∑

j∈N l

(xi
t)

⊺

Qi,j
t xj

t

=
∑

k∈K

∑

l∈K,l 6=k

∑

i∈Nk

∑

j∈N l

(xi
t)

⊺

px,k,lt xj
t

+
∑

k∈K

∑

i∈Nk

∑

j∈Nk,j 6=i

(xi
t)

⊺

px,k,kt xj
t

+
∑

k∈K

∑

i∈Nk

(xi
t)

⊺

qkt x
i
t

=
∑

k∈K

∑

l∈K,l 6=k

|N k||N l|(x̄k
t )

⊺

px,k,lt x̄l
t

+
∑

k∈K

∑

i∈Nk

∑

j∈Nk

|N k|2(x̄k
t )

⊺

px,k,kt x̄k
t

−
∑

k∈K

∑

i∈Nk

(xi
t)

⊺

px,k,kt xi
t +

∑

k∈K

∑

i∈Nk

(xi
t)

⊺

qkt x
i
t

=
∑

k∈K

∑

l∈K

|N k||N l|(x̄k
t )

⊺

px,k,lt x̄l
t

+
∑

k∈K

∑

i∈Nk

(xi
t)

⊺

(qkt − px,k,kt )xi
t

=: xt
⊺
P x
t xt +

∑

k∈K

∑

i∈Nk

1

|N k| (x
i
t)

⊺

Qk
t x

i
t, (39)

where P x
t
k,l = |N k||N l|px,k,l and Qk

t = |N k|(qkt − px,k,kt ).
By similar algebraic manipulation, we can show

ut
⊺
Rtut = ut

⊺
Pu
t ut +

∑

k∈K

∑

i∈Nk

1

|N k| (u
i
t)

⊺

Rk
t u

i
t, (40)

where Pu
t
k,l = |N k||N l|pu,k,l and Rk

t = |N k|(rkt − pu,k,kt ).
Substituting (39) and (40) in (3), we get (6).

B. Proof of Corollary 3

Under the assumptions on the model, the dynamics, given

by (25) and (26), simplify to

x̆i
t+1 = Ak

t x̆
i
t + w̆i

t, x̄t+1 = Ātx̄t + B̃tũt + w̄t,

and c̄t(x̄t, ūt) of Corollary 4 simplifies to

c̄t(x̄t, ūt) = x̄
⊺

t (Q̄t + P x
t )x̄t + ũ

⊺

t (P̃
u
t )ũt. (41)

Thus, the N subsystems corresponding to x̆i
t are uncontrolled

and we need to identify ũt to optimally control the dynamics

of mean-field x̄t with per-step cost given by (41). Hence, the

optimal solution is given by

ũt = L̄tx̄t =
∑

k∈K

L̃k
t x̄

k
t ,

where L̄t is computed as explained in Corollary 3. To complete

the proof, note that if agent i ∈ N k of sub-population k ∈ K
chooses action ui

t = θkt
+
L̃k
t x̄

k
t , then we get θkt ū

k
t = L̃k

t x̄
k
t ;

consequently, ũt =
∑

k∈K θkt ū
k
t =

∑

k∈K L̃k
t x̄

k
t .

C. Proof of Theorem 3

As in the proof of Theorem 1 described in Section V, define

x̆i
t = xi

t − x̄k
t , ŭ

i
t = ui

t − ūk
t , x̊t = vec((x̆i

t)i∈N , x̄t), and

ůt = vec((ŭi
t)i∈N , ūt). We identify a cost function {c̆kt }k∈K

and c̄t as in Corollary 4.

Corollary 5 For time t, t ∈ {1, . . . , T}, there exist functions

{c̆kt }k∈K and c̄t such that

ct(xt,ut, x̄t, ūt) = c̄t(x̄t, ūt) +
∑

i∈Nk,k∈K

c̆kt (x̆
i
t, ŭ

i
t)

−
∑

k∈K

(r̄kt )
⊺

Qk
t r̄

k
t ,

and for t = T ,

cT (xt, x̄t) = c̄T (x̄T ) +
∑

i∈Nk,k∈K

c̆kT (x̆
i
T )−

∑

k∈K

(r̄kT )
⊺

Qk
T r̄

k
T .

To describe c̄t(·), define yt :=
[

x̄t−r̄t
x̄t−st

]

. Then,

c̄t(x̄t, ūt) = y
⊺

t

[

Q̄t 0
0 P x

t

]

yt + ū
⊺

t (R̄t + Pu
t )ūt,

c̄T (x̄T ) = y
⊺

T

[

Q̄T 0
0 P x

T

]

yT .

Moreover,

c̆kt (x̆
i
t, ŭ

i
t) =

1

|N k|
[

(x̆i
t − rit)

⊺

Qk
t (x̆

i
t − rit) + (ŭi

t)
⊺

Rk
t ŭ

i
t

]

,

c̆kT (x̆
i
T ) =

1

|N k|
[

(x̆i
T − riT )

⊺

Qk
T (x̆

i
T − riT )

]

.

Then, define a centralized auxiliary system where the state is

x̊t = vec((x̆i
t)i∈N , x̄t), action is ůt = vec((ŭi

t)i∈N , ūt), and

the per-step cost is given by Corollary 5. Note that the per-step

cost is decomposed into terms that depend only on (x̄t, ūt)
and terms that depend only on (x̆i

t, ŭ
i
t) (and terms that do not

depend on the control strategy). The rest of the proof follows

along the same lines of the proof of Theorem 1. In particular,
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we consider a deterministic dynamical system and split it into

K + 1 classes. The agents in class k, k ∈ K, are solving a

tracking problem whose solution is given by

ŭi
t = L̆k

t x̆
i
t + F̆ k

t v
i
t.

The mean-field component is also solving a tracking problem

whose solution is given by

ūt = L̄tx̄t + F̄tv̄t.

The result of the Theorem follows from combining the above

equations. Therefore, from standard results in LQR tracking

problem, the optimal control law of agent i ∈ N k of sub-

population k ∈ K is given by

ui
t = ŭi

t + ūk
t =

[

L̆k
t (x

i
t − x̄k

t ) + F̆ k
t v

i
t

]

+
[

L̄k
t x̄t + F̄ k

t v̄t
]

,

where gains {L̆k
t , L̄

k
t , F̆

k
t , F̄

k
t }T−1

t=1 are identical for all agents

of sub-population k, v̄t is identical for all agents of all sub-

populations, and vit may be different for each agent.

D. Proof of Theorem 4

The proof follows the same lines as the proof of The-

orem 1 with the following differences. The mean-field is

defined as x̄k,λ
t = 1

|Nk|

∑

i∈Nk λixi
t (similar interpretations

hold for ūk,λ
t and w̄k,λ

t ) and the breve variables are defined

as x̆i
t = xi

t − λi

bi
x̄k,λ
t (similar interpretations hold for ŭi

t and

w̆i
t). Note that due to (A4), the dynamics of x̆i

t and x̄λ
t are

still given by (25) and (26), respectively, where Āt and B̄t are

defined as in Theorem 4.

The equivalent of Lemma 1 is the following:

Lemma 7 Let (λ1, . . . , λN ) ∈ R
N and (b1, . . . , bN ) ∈ R

N
>0.

In addition, for any x = vec(x1, . . . , xN ) and x̄λ =

〈(λixi)Ni=1〉, let x̆i = xi − λi

bi
x̄λ, i ∈ {1, . . . , N}. Then, for

any matrix Q of appropriate dimension,

1

N

N
∑

i=1

bi(xi)
⊺

Qxi =
1

N

N
∑

i=1

bi(x̆i)
⊺

Qx̆i + (x̄λ)
⊺

µQx̄λ,

where µ := 2− 1
N

∑N

i=1
(λi)2

bi
.

Consequently, the equivalent of Corollary 4 is the following

Corollary 6 For time t, t ∈ {1, . . . , T}, there exist functions

{c̆k}k∈K and c̄t such that

ct(xt,ut, x̄
λ
t , ū

λ
t ) = c̄t(x̄

λ
t , ū

λ
t ) +

∑

k∈K

∑

i∈Nk

c̆it(x̆
i
t, ŭ

i
t),

where

c̄t(x̄
λ
t , ū

λ
t ) = (x̄λ

t )
⊺

(Q̄t + P x
t )x̄

λ
t + (ūλ

t )
⊺

(R̄t + Pu
t )ū

λ
t ,

c̆it(x̆
i
t, ŭ

i
t) =

bi

|N k|
[

(x̆i
t)

⊺

Qk
t x̆

i
t + (ŭi

t)
⊺

Rk
t ŭ

i
t

]

,

and for t = T,

cT (xt, x̄
λ
t ) = c̄T (x̄

λ
T ) +

∑

i∈Nk,k∈K

c̆iT (x̆
i
T ),

where

c̄T (x̄
λ
T ) = (x̄λ

T )
⊺

(Q̄T + P x
T )x̄

λ
T ,

c̆iT (x̆
i
T ) =

bi

|N k|
[

(x̆i
T )

⊺

Qk
T x̆

i
T

]

,

where Q̄t and R̄t are defined as in Theorem 4.

The rest of the proof is the same as in Section V-C. We can

show that the optimal control strategy of auxiliary model is

given by

ū
λ
t = L̄tx̄

λ
t and for k ∈ K, i ∈ N k, ŭi

t = L̆k
t x̆

i
t,

where the gains {L̆k
t , L̄t}T−1

t=1 are given as in Theorem 4. To

complete the proof of Theorem 4, note that

ui
t = ŭi

t +
λi

bi
ūk,λ
t = L̆k

t

(

xi
t −

λi

bi
x̄k,λ
t

)

+
λi

bi
L̄k
t x̄

λ
t .

Thus, the control laws specified in Theorem 4 are the optimal

centralized control laws, and, a fortiori, the optimal decentral-

ized control laws.
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