
Optimal decentralized control of two agent

linear system with partial output feedback:

certainty equivalence and optimality of

linear strategies

Mohammad Afshari and Aditya Mahajan

Department of Electrical and Computer Engineering, McGill University
(email: mohammad.afshari2@mail.mcgill.ca, aditya.mahajan@mcgill.ca)

Abstract: We consider the optimal decentralized control of two agent linear system in which
the agent 2’s state is affected by the state and control actions of agent 1 but not vice versa. The
state of agent 1 is perfectly observed by both agents while the state of agent 2 is observed with
noise by agent 2. Thus, the information structure is partially nested. However, we do not assume
that the process and observation noises are Gaussian. Therefore, it is not known a priori whether
linear strategies are globally optimal. Without using dynamic programming, we show that the
optimal strategy is linear and certainty equivalent. Our proof is based on three steps: static
reduction via state splitting, orthogonal projection, and completion of squares. We believe that
our solution methodology is of independent interest for decentralized control of linear systems.
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1. INTRODUCTION

In centralized stochastic control of linear systems with
quadratic per-stage cost, the optimal control strategy is a
linear function of the controller’s estimate of the state of the
system. In addition, there is a two-way separation between
estimation and control: the optimal gain is the same as in
the case of state feedback; the optimal state estimate is the
optimal estimate of the uncontrolled system shifted by an
amount that depends on the past control actions. Thus, the
optimal control strategy does not depend on the estimation
strategy and the estimation strategy does not depend on the
control strategy. Although the separation result is typically
stated under the assumption that the noise is Gaussian
(such systems are typically referred to as LQG (linear
quadratic and Gaussian) systems), it holds more generally
as long as the noise has finite second moment (Wonham,
1968; Root, 1969; Bertsekas, 2000).

The situation in decentralized stochastic control is signifi-
cantly different. Even for LQG systems, linear strategies
are not globally optimal (Witsenhausen, 1968). Linear
strategies are optimal if the information structure is
partially nested and the primitive random variables are
Gaussian (Ho and Chu, 1972). If attention is restricted
to linear strategies, the problem of finding the best linear
strategy need not be convex. It is convex if the system
is quadratic invariant (Rotkowitz and Lall, 2006). Based
on these characterizations, the literature on decentralized
control of linear systems is broadly split into two parts:
(i) models with partially nested information structure where
the noise is assumed to be Gaussian and the structure of
optimal linear strategy is established; and (ii) quadratic
invariant models where no restriction is imposed on the

noise process and the structure of the best linear 1 strategy
is established. In the interest of space, we omit a detailed
literature overview and refer the reader to Mahajan et al.
(2012) for an overview. To the best of our knowledge, the
problem of identifying the optimal strategy when the noise
is not Gaussian has not been investigated. Note that, a
priori, it is not obvious that linear strategies are optimal
in such a setup.

Two main proof techniques are used to establish the
structure of optimal strategies: (i) time domain decom-
position using dynamic programming for partially nested
systems and (ii) frequency domain Youla parametrization
for quadratic invariant systems. Both of these techniques
are difficult to use to identify optimal control strategies
when the noise is not Gaussian. Since it is not known
that linear strategies are optimal, frequency domain tech-
niques cannot be used. Dynamic programming techniques
only work for partial history sharing information struc-
tures (Nayyar et al., 2013) and even in those cases, the
sufficient statistics are distribution valued and at each
step of the dynamic program, one needs to search over all
non-linear prescriptions.

In this paper, we revisit the so called two player problem
with partial output feedback but do not assume that
the noise is Gaussian. Variants of this model have been
considered in Swigart and Lall (2010, 2011); Kim and Lall
(2011, 2012); Lessard and Lall (2012, 2015); Lessard and

1 The distinction between “optimal linear” and the “best linear”

strategies is that in the former case, restricting attention to linear

strategies is without loss of optimality while in the latter case the

restriction to linear strategies is arbitrary and may lead to loss of

optimality.



Nayyar (2013); Nayyar et al. (2018). The model is partially
nested and quadratic invariant; all of the previous papers
assume that the noise is Gaussian (and hence, the optimal
strategy is known to be linear). We do not impose any
restriction on the noise or on the class of control strategies.

The main result of this paper is to show that even when the
noise is not Gaussian, the optimal control strategy retains
the main feature of the Gaussian noise case. In particular,
there is a two way separation between estimation and
control. On the one hand, the optimal control strategy is
a linear function of the state estimates given the common
and the local information; the corresponding gains are
obtained by solving two standard Riccati equations. On
the other hand, the optimal state estimates are given by
the estimates of an uncontrolled system shifted by amounts
that depend on the past control actions.

It is worth highlighting that since the noise is not Gaussian,
the state estimate need not be a linear function of the
observations. Thus, although the optimal control action is
a linear function of the conditional estimate, it need not be
a linear function of the observations. Furthermore, it may
not be possible to recursively compute the state estimates
and we need to recursively keep track of the conditional
distributions. Thus, although we have shown that the state
estimate is a sufficient statistics for control, it is not an
information state for dynamic programming.

Our proof is based on a new solution methodology that
consists of three steps: static reduction via state splitting,
completion of squares, and orthogonal projection. We
believe that our solution methodology is of independent
interest for decentralized control of linear systems.

1.1 Notations

Given a matrix A, Aij denotes its (i, j)-th block element,
A⊺ denotes its transpose, vec(A) denotes the column vector
of A formed by vertically stacking the columns of A. Given
a square matrix A, Tr(A) denotes the sum of its diagonal
elements. In denotes an n × n identity matrix. We simply
use I when the dimension is clear for context.

Given any vector valued process {y(t)}t≥1 and any time
instances t1, t2 such that t1 ≤ t2, y(t1:t2) is a short hand
notation for vec(y(t1), y(t1 + 1), . . . , y(t2)).

Given random vectors x and y, E[x] denotes the mean
of x and E[x|y] denotes the conditional mean of random
variable x given random variable y.

Superscript index agents and local, common, and stochastic
components of state and control. Subscripts denote compo-
nents of vectors and matrices. The notation x̂(t|i) denotes
the estimate of variable x at time t conditioned on the info
at agent i at time t.

2. PROBLEM FORMULATION AND MAIN RESULT

2.1 Problem formulation

Consider a decentralized control system with two coupled

agents. For i ∈ {1, 2}, let xi(t) ∈ R
di

x and ui(t) ∈ R
di

u

denote the state and control action of agent i. The initial

state of the system is (x1(1), x2(1)) and for t ≥ 1, the
dynamics are given by

x(t + 1) = Ax(t) + Bu(t) + w(t), (1)

where x(t) = vec(x1(t), x2(t)) denotes the state of the
system, u(t) = vec(u1(t), u2(t)) denotes the control action
of both controllers, w(t) = vec(w1(t), w2(t)) is the system
disturbance, and the system matrices are given by

A =

[
A11 0
A21 A22

]

and B =

[
B11 0
B21 B22

]

.

The A and B matrices are block lower triangular. Thus,
agent 1 affects the dynamics of agent 2 but not vice-versa.
We may think of agent 1 as a major agent and agent 2 as
a minor agent.

The system has partial output feedback. In particular, the
state of agent 1 is perfectly observed by both agents while
the state of agent 2 is observed by agent 2 with noise (but
not observed by agent 1). In particular, the observation of
agent 2 is

y2(t) = C21x1(t) + C22x2(t) + v2(t). (2)

Thus, the information Ii(t) available to agent i, i ∈ {1, 2},
is given by

I1(t) := {x1(1:t), u1(1:t − 1)}, (3)

I2(t) := {x1(1:t), y2(1:t), u1(1:t − 1), u2(1:t − 1)}. (4)

Furthermore, agent i chooses its control action according to

ui(t) = gi,t(Ii(t)),

where gi := (gi,1, . . . gi,T ) is called the control strategy of
agent i.

The primitive random variables {x1(1), x2(1), w1(1 : T ),
w2(1 : T ), v2(1 : T )} are independent and have zero mean
and finite variance. Note that we do not assume that the
primitive random variables are Gaussian.

The system incurs a per-step cost of

c(x(t), u(t)) = x(t)⊺Qx(t) + u(t)⊺Ru(t), (5)

at time t ∈ {1, . . . , T − 1} and a terminal cost of

C(x(T )) = x⊺(T )QT x(T ). (6)

at time T . We assume that Q and QT are positive
semidefinite and R is positive definite.

The performance of any strategy (g1, g2) is given by

J(g1, g2) = E

[ T∑

t=1

c(x(t), u(t)) + C(x(T ))

]

. (7)

We are interested in the following optimization problem.

Problem 1. Given horizon T , the system dynamic matrices
A and B, the cost matrices Q, QT , and R, and the
covariance matrices of the primitive random variables,
choose a strategy (g1, g2) to minimize the total expected
cost given by (7).

Remark 1. The system described above is partially nested
(Ho and Chu, 1972). Thus, if the primitive random
variables are jointly Gaussian, then linear strategies are
optimal. The system described above is also quadratic
invariant (Rotkowitz and Lall, 2006). Thus, if we arbitrarily
restrict attention to linear strategies, then the problem of
finding the best linear strategy is convex. However, there
is no general methodology to identify sufficient statistics
for partially nested or quadratic invariant problems. In



addition, it is not known if linear strategies are globally
optimal when the primitive random variables are not
Gaussian.

2.2 Main result

Following Nayyar et al. (2013), we split the information at
each agent into common information and local information.
The common information is defined as the information
commonly known to both agents, i.e.,

Ic(t) := I1(t) ∩ I2(t) = {x1(1 : t), u1(1 : t − 1)} = I1(t).

The local information is the remaining information at each
agent. Thus,

I1,ℓ(t) := I1(t) \ Ic(t) = ∅,

I2,ℓ(t) := I2(t) \ Ic(t) = {y2(1 : t), u2(1 : t − 1)}.

Now, we split the control action into two parts: u(t) =
uc(t) + uℓ(t), where

uc(t) = E[u(t)|Ic(t)],

uℓ(t) = u(t) − uc(t).

We refer to uc(t) and uℓ(t) as the common control and the
local control, respectively. We have the following properties.

(H1) uℓ
1(t) = 0.

(H2) E[uℓ
2(t)|Ic(t)] = 0.

(H3) E[uc(t)⊺uℓ(t)] = 0.

Both (H1) and (H2) follow from the definition of uℓ(t) and
(H3) follows because mean square error is orthogonal to
the estimate.

Our main result is the following.

Theorem 1. Given the split of control action u(t) as uc(t)
and uℓ(t) = vec(0, uℓ

2(t)), the optimal control actions are

uc(t) = −Lc(t)x̂(t|c),

uℓ
2(t) = −Lℓ(t)(x̂2(t|2) − x̂2(t|c)),

where

x̂(t|c) = E[x(t)|Ic(t)],

x̂(t|2) = E[x(t)|I2(t)].

Furthermore, the optimal gains are given by

Lc(t) = [R + B⊺Sc(t + 1)B]−1B⊺Sc(t + 1)A,

Lℓ(t) = [R22 + B
⊺

22Sℓ(t + 1)B22]−1B
⊺

22Sℓ(t + 1)A22,

where Sc(1:T ) and Sℓ(1:T ) are the solution of the following
standard Riccati equations: Sc(T ) = QT , Sℓ(T ) = [QT ]22,
and for t ∈ {T − 1, . . . , 1},

Sc(t) = Q + A⊺Sc(t + 1)A

− Lc(t)⊺[R + B⊺S(t + 1)B]Lc(t),

and

Sℓ(t) = Q22 + A
⊺

22Sℓ(t + 1)A22

− Lℓ(t)⊺[R22 + B
⊺

22Sℓ(t + 1)B22]Lℓ(t).

3. PROOF OF THE MAIN RESULT

The proof consists of three steps. In Step 1, we split the
state into controlled and uncontrolled components and

use that to provide a static reduction of the information
structure. In Step 2, we use completion of squares to write
an alternative expression for the total cost. In Step 3,
we further simplify the expression of total cost using
orthogonal projections. The final expression is such that
the form of the optimal controller can be identified by
inspection.

Step 1: Static reduction via state splitting

We split the state into three components: xc(t), xℓ(t),
xs(t) (called the common, local, and stochastic components,
respectively) as follows.

xc(1) = 0, xc(t + 1) = Axc(t) + Buc(t),

xℓ(1) = 0, xℓ(t + 1) = Axℓ(t) + Buℓ(t),

xs(1) = x(1), xs(t + 1) = Axs(t) + w(t).

Due to the linearity of dynamics, we have

x(t) = xc(t) + xℓ(t) + xs(t).

Now, define

ys
2(t) = C21xs

1(t) + C22xs
2(t) + v2(t)

and consider the information structure

I1,s(t) = {xs
1(1 : t)},

I2,s(t) = {ys
2(1 : t)}.

Lemma 2. For any arbitrary but fixed control strategy
(g1, g2), I1(t) ≡ I1,s(t) and I2(t) ≡ I2,s(t) (i.e., both sets
generate the same σ-field or, equivalently, they are functions
of each other.

Proof. The proof is omitted due to space limitations
but is similar in spirit to similar results for centralized
stochastic control. For example, see Kumar and Varaiya
(1986, Chapter 7.3). �

Thus, we can assume that agents choose their control
actions based on Ii,s(t) rather than Ii(t). Note that
Ii,s(t) does not depend on any of the previous control
actions. Therefore, following Witsenhausen (1988), we call
{I1,s(t), I2,s(t)} to be the static reduction of {I1(t), I2(t)}.
We exploit the static reduction to simplify the expressions
for conditional expectations.

Some preliminary properties

Now we establish some preliminary properties of the
different components of the state and the control that
follow from state splitting and static reduction.

Lemma 3. The following properties hold.

(P1) xℓ
1(t) = 0.

(P2) E[uℓ
2(t)] = 0.

(P3) For any τ ≤ t, E[uℓ
2(τ)|Ic(t)] = 0.

(P4) E[xℓ
2(t)|Ic(t)] = 0.

(P5) E[xc(t)|Ic(t)] = xc(t).

(P6) For any matrix M of compatible dimensions,
E[(xℓ

2(t))⊺Mxs
1(t)] = 0.

Proof. We prove each property separately.

(P1) This is an immediate consequence of the fact that
A and B are block lower triangular, xℓ(1) = 0, and
uℓ

1(t) = 0.



(P2) By the smoothing property of conditional expectation,
we have

E[uℓ
2(t)] = E

[
E[uℓ

2(t)|Ic(t)]
]

= 0

where the last equality follows from (H2).

(P3) By (H2), we have that E[uℓ(t)|Ic(t)] = 0. Now consider
τ < t. By Lemma 2,

E[uℓ
2(t)|Ic(t)] = E[uℓ

2(t)|I1,s(t)].

Now observe that,

I1,s(t) = {xs
1(1:t)} ≡ {xs

1(1:τ), w1(τ :t − 1)}

= {I1,s(τ), w1(τ :t − 1)}

Thus,

E[uℓ
2(t)|I1,s(t)] = E[uℓ

2(τ)|I1,s(τ), w1(τ :t − 1)]

(a)
= E[uℓ

2(τ)|I1,s(τ)]

(b)
= E[uℓ

2(τ)|I1(τ)]

(c)
= 0

where (a) holds because uℓ
2(τ) is independent of future

noise w1(τ :t−1), (b) uses Lemma 2, and (c) uses (H2).

(P4) Since xℓ(1) = 0, from (H1) and (P1) we have that

xℓ
2(t) =

t−1∑

τ=1

Aτ−1
22 B22uℓ

2(t − τ).

Hence, the result follows from (P3).

(P5) By definition, uc(1:t) is a function of Ic(t), and
therefore, xc(t) is a function of Ic(t).

(P6) By the smoothing property of conditional expectation,
we have

E[(xℓ
2(t))⊺Q21xs

1(t)] = E
[
E[(xℓ

2(t))⊺Q21xs
1(t)|Ic(t)]

]

(a)
= E

[
E[(xℓ

2(t))⊺|Ic(t)] Q21xs
1(t)

]

(b)
= 0,

where (a) follows because xs
1(t) is part of Ic(t) and (b)

follows from (P4). �

For ease of notation, we consider the following combinations
of different components of the state:

zc(t) = xc(t) + xs(t),

zℓ
2(t) = xℓ

2(t) + xs
2(t).

Based on the properties of Lemma 3, we show that the
per-step cost can be split as follows.

Lemma 4. The following properties hold:

(1) E
[
u(t)⊺Ru(t)

]
= E

[
uc(t)⊺Ruc(t) + uℓ

2(t)⊺R22uℓ
2(t)

]
.

(2) E
[
x(t)⊺Qx(t)

]
= E

[
(zc(t))⊺Q(zc(t))

+ (zℓ(t))⊺Q22(zℓ(t)) − xs
2(t)Q22xs

2(t)
]
.

Proof. We prove the two parts separately.

(1) From smoothing property of conditional expectation
and (H3), we get

E
[
u(t)⊺Ru(t)

]
= E

[
uc(t)⊺Ruc(t) + uℓ(t)⊺Ruℓ(t)

]
.

The result then follows from (H1).

(2) Since x(t) = xc(t) + xℓ(t) + xs(t), we can write

E
[
x(t)⊺Qx(t)

]
= E

[
(xc(t)+xs(t))⊺Q(xc(t)+xs(t))

]

+ E[xℓ(t)⊺Qxℓ(t) + 2xℓ(t)⊺Q(xs(t) + xc(t))]. (8)

Now from (P1) we have

E[xℓ(t)⊺Qxℓ(t)] = E[xℓ
2(t)⊺Q22xℓ

2(t)]. (9)

From (P1) and (P6) we have

E[xℓ(t)⊺Qxs(t)] = E[xℓ
2(t)⊺Q22xs

2(t)]. (10)

Finally, from smoothing property of conditional ex-
pectation, we have

E[xℓ(t)⊺Qxc(t)] = E[xℓ(t)⊺Qxc(t)|Ic(t)]]

(a)
= E[xℓ(t)⊺|Ic(t)]Qxc(t)]

(b)
= 0, (11)

where (a) follows from (P5), and (b) follows from (P1)
and (P4). Substituting (9), (10), and (11) in (8) and
competing the squares, we get the results. �

Step 2. Completion of squares

Lemma 5. For variables x and u and matrices A, B, R and
S of appropriate dimensions, we have

u⊺Ru+(Ax+Bu)⊺S(Ax+Bu) = (u+Lx)⊺∆(u+Lx)+x⊺S̃x,

where

∆ = [R + B⊺SB], L = ∆−1B⊺SA, S̃ = A⊺SA − L⊺∆L.

Proof. The proof follows easily from multiplying the sec-
ond term in the left hand side and adding and subtracting
the term (Lx)⊺∆Lx. �

Lemma 6. For random variables (x, u, w) such that w is
zero-mean and independent of (x, u), and given matrices
A, B, R, and S of appropriate dimensions, we have

E[u⊺Ru + (Ax + Bu + w)⊺S(Ax + Bu + w)]

= E[(u + Lx)⊺∆(u + Lx)] + E[x⊺S̃x] + E[w⊺Sw],

where ∆, L, and S̃ are as in Lemma 5.

Proof. Since w is zero mean and independent of (x, u),
we have

E[(Ax + Bu + w)⊺S(Ax + Bu + w)]

= E[(Ax + Bu)⊺S(Ax + Bu) + w⊺Sw].

Simplifying the first term using Lemma 6, we get the result.
�

Lemma 7. The total cost J(g1, g2) may be written as

E

[

x(1)⊺Sc(1)x(1) + x2(1)⊺Sℓ(1)x2(1)

+

T −1∑

t=1

[

w(t)⊺Sc(t + 1)w(t) + w2(t)⊺Sℓ(t + 1)w2(t)
]

+

T −1∑

t=1

[

(uc(t) + Lc(t)zc(t))⊺∆c(t)(uc(t) + Lc(t)zc(t))
]

+

T −1∑

t=1

[

(uℓ
2(t) + Lℓ(t)zℓ

2(t))⊺∆ℓ(t)(uℓ
2(t) + Lℓ(t)zℓ

2(t))
]

+
T −1∑

t=1

[

(A21xs
1(t))⊺Sℓ(t + 1)(A21xs

1(t) + 2A22xs
2(t))

−
T∑

t=1

xs
2(t)Q22xs

2(t)
]]



where

∆c(t) = [R + B⊺Sc(t + 1)B],

∆ℓ(t) = [R22 + B
⊺

22Sℓ(t + 1)B22].

Proof. We start rewriting the total cost using the result
of Lemma 4. Now, the dynamics of zc(t) and zℓ(t) may be
written as

zc(t + 1) = Azc(t) + Buc(t) + w(t),

zℓ
2(t + 1) = A22zℓ

2(t) + A21xs
1(t) + B22uℓ

2(t) + w2(t),

where we can write the full dynamics of second equation
as follows:
[
xs

1(t + 1)
zℓ

2(t + 1)

]

=

[
A11 0
A21 A22

] [
xs

1(t)
zℓ

2(t)

]

+

[
0

B22

]

uℓ
2(t)+

[
w1(t)
w2(t)

]

.

Note that w(t) is zero mean and independent of (zc(t), uc(t))
(because both zc(t) and uc(t) depend on w(1 : t − 1) which
is independent of w(t)). Similarly, w(t) is zero mean and
independent of (vec(x2

1(t), zℓ
2(t)), uℓ

2(t)). The result then
follows from recursively applying Lemma 6. �

An immediate consequence of Lemma 7 is the following.

Lemma 8. We can minimize J(g1, g2) by minimizing
J̃(g1, g2) defined as

E

[T −1∑

t=1

[

(uc(t) + Lc(t)zc(t))⊺∆c(t)(uc(t) + Lc(t)zc(t))
]

+
T −1∑

t=1

[

(uℓ
2(t) + Lℓ(t)zℓ

2(t))⊺∆ℓ(t)(uℓ
2(t) + Lℓ(t)zℓ

2(t))
]]

.

(12)

Proof. The result follows from Lemma 7 and observing
that the remaining terms in the expression for J(g1, g2) in
Lemma 7 are a function of primitive random variables and
hence, do not depend on the choice of control actions.

Step 3. Orthogonal projection

In order to minimize J̃(g1, g2) defined in (12), define

ẑc(t) := E[zc(t)|Ic(t)],

ẑℓ
2(t) := E[zℓ

2(t)|I2(t)] − E[zℓ
2(t)|I1(t)].

Lemma 9. Let z̃c(t) = zc(t)−ẑc(t) and z̃ℓ
2(t) = zℓ

2(t)−ẑℓ
2(t).

Then, we have the following:

(C1) z̃c(t) and z̃ℓ
2(t) may be written in terms of the primitive

random variables. Hence, they do not depend on the
control strategies.

(C2) E[z̃c(t)⊺ẑc(t)] = 0

(C3) E[z̃ℓ
2(t)⊺ẑℓ

2(t)] = 0.

(C4) For any matrix M of appropriate dimensions, we have
E[uℓ

2(t)⊺Mz̃ℓ
2(t)] = 0.

Proof.

(C1) Note that

ẑc(t) = E[xc(t)+xs(t)|Ic(t)] = xc(t)+E[xs(t)|I1,s(t)].

where the second equality uses (P5) and Lemma 2.
Thus,

z̃c(t) := zc(t) − ẑc(t) = xs(t) − E[xs(t)|I1,s(t)],

which only depends on the primitive random variables.

For the second part, observe that

ẑℓ
2(t) = E[zℓ

2(t)|I2(t)] − E[zℓ
2(t)|I1(t)]

= xℓ
2(t) + E[xs

2(t)|I2(t)]

− E[xℓ
2(t)|I1(t)] − E[xs

2(t)|I1(t)]

(a)
= xℓ

2(t) + L[xs
2(t)|I2,s(t)] − L[xs

2(t)|I1,s(t)],
(13)

where (a) uses Lemma 2 and (P4). Thus,

z̃ℓ
2(t) = zℓ

2(t) − ẑℓ
2(t)

= xs
2(t) − E[xs

2(t)|I2,s(t)] + E[xs
2(t)|I1,s(t)],

(14)

which only depends on the primitive random variables.

(C2) This follows immediately from the fact that error of a
mean-squared estimator is orthogonal to the estimate.

(C3) Using the expressions for ẑℓ
2(t) and z̃ℓ

2(t) from (13)
and (14), we get

E[z̃ℓ
2(t)⊺ẑℓ

2(t)]

= E
[
xs

2(t)⊺xℓ
2(t) − E[xs

2(t)|I2(t)]⊺xℓ
2(t)

]

+ E
[
E[xs

2(t)|I1(t)]⊺xℓ
2(t)

]

+ E
[
xs

2(t)⊺E[xs
2(t)|I2(t)]

]

− E
[
E[xs

2(t)|I2(t)]⊺E[xs
2(t)|I2(t)]

]

+ 2E
[
E[xs

2(t)|I2(t)]⊺E[xs
2(t)|I1(t)]

]

− E
[
xs

2(t)⊺E[xs
2(t)|I1(t)]

]

− E
[
E[xs

2(t)|I1(t)]⊺E[xs
2(t)|I1(t)]

]
.







(Term I)

(15)

Now, we consider each of the terms separately.

E
[
xs

2(t)⊺xℓ
2(t) − E[xs

2(t)|I2(t)]⊺xℓ
2(t)

]

(a)
= E

[
xs

2(t)⊺xℓ
2(t) − E[xs

2(t)⊺xℓ
2(t)|I2(t)]

]
= 0, (16)

where (a) follows because xℓ
2(t) is a function of I2(t)

and the last equation follows from smoothing property
of conditional expectation. For the remaining terms,
we will simplify them by first using the smoothing
property of conditional expectation (and conditioning
on I1(t) or I2(t) as appropriate), moving one term
out of the inner expectation, and simplifying using
Lemma 3. Thus,

E
[
E[xs

2(t)|I1(t)]⊺xℓ
2(t)

]

= E
[
E

[
E[xs

2(t)|I1(t)]⊺xℓ
2(t)

∣
∣I1(t)

]]

= E
[
E[xs

2(t)|I1(t)]⊺E[xℓ
2(t)|I1(t)]

]
= 0. (17)

Next, consider

E[xs
2(t)⊺E[xs

2(t)|I2(t)]]

= E
[
E[xs

2(t)⊺E[xs
2(t)|I2(t)]|I2(t)]

]

= E
[
E[xs

2(t)|I2(t)]⊺E[xs
2(t)|I2(t)]

]
. (18)

Finally, by a similar argument we can show that
(Term I) is 0. Substituting (16)–(18) in (15), we get
the result.

(C4) Using the expression for z̃ℓ
2(t) from (14), we get

E[uℓ
2(t)⊺Mz̃ℓ

2(t)]

= E[uℓ
2(t)⊺M

(
xs

2(t) − E[xs
2(t)|I2(t)]

)
]

+ E[uℓ
2(t)⊺ME[xs

2(t)|I1(t)]]



(a)
= E

[
E[uℓ

2(t)⊺M
(
xs

2(t) − E[xs
2(t)|I2(t)]

)
|I2(t)]

]

+ E
[
E[uℓ

2(t)⊺ME[xs
2(t)|I1(t)]|I1(t)]

]

(b)
= E

[
uℓ

2(t)⊺M E[xs
2(t) − E[xs

2(t)|I2(t)]|I2(t)]
︸ ︷︷ ︸

=0

]

+ E
[
E[uℓ

2(t)⊺|I1(t)]
︸ ︷︷ ︸

=0 by (H2)

ME[xs
2(t)|I1(t)]

]

= 0,

where (a) follows from the smoothing property of
conditional expectation; the first term in (b) uses
the fact that uℓ

2(t) is a function of I2(t) and the
second term in (b) uses the fact that E[xs

2(t)|I1(t)] is
a function of I1(t).

Proof of Theorem 1

Using (C2) and the fact that uc(t) is a function of Ic(t),
we get

E
[
(uc(t) + Lc(t)zc(t))⊺∆c(t)(uc(t) + Lc(t)zc(t))

]

= E
[
(uc(t) + Lc(t)ẑc(t))⊺∆c(t)(uc(t) + Lc(t)ẑc(t))

]

+ E
[
z̃c(t)⊺Lc(t)⊺∆c(t)Lc(t)z̃c(t)

]
.

Using (C3) and (C4), we get

E
[
(uℓ

2(t) + Lℓ(t)zℓ
2(t))⊺∆ℓ(t)(uℓ

2(t) + Lℓ(t)zℓ
2(t))

]

= E
[
(uℓ

2(t) + Lℓ(t)ẑℓ
2(t))⊺∆ℓ(t)(uℓ

2(t) + Lℓ(t)ẑℓ
2(t))

]

+ E
[
z̃ℓ

2(t)⊺Lℓ(t)⊺∆ℓ(t)Lℓ(t)z̃ℓ
2(t)

]
.

Substituting these in (12) we get that J̃(g1, g2) is given by

E

[T −1∑

t=1

[

(uc(t) + Lc(t)ẑc(t))⊺∆c(t)(uc(t) + Lc(t)ẑc(t))
]

+
T −1∑

t=1

[

z̃c(t)⊺Lc(t)⊺∆c(t)Lc(t)z̃c(t)
]

+

T −1∑

t=1

[

(uℓ
2(t) + Lℓ(t)ẑℓ

2(t))⊺∆ℓ(t)(uℓ
2(t) + Lℓ(t)ẑℓ

2(t))
]

+
T −1∑

t=1

[

z̃ℓ
2(t)⊺Lℓ(t)⊺∆ℓ(t)Lℓ(t)z̃ℓ

2(t)
]]

(19)

Each term in (19) is quadratic and hence positive. By (C1),
the second and the forth term do not depend on the control
actions. Choosing

uc(t) = −Lc(t)ẑc(t),

uℓ(t) = −Lℓ(t)ẑℓ
2(t),

make the first and third term of (19) equal to zero (and
hence minimizes them). Thus, that is an optimal strategy.
The result follows from observing that x̂2(t|2) − x̂2(t|c) =
ẑℓ

2(t).

4. CONCLUSION

In this paper, we consider the optimal decentralized control
of two agent linear system with partial output feedback.
We do not assume that the primitive random variables are
Gaussian. Using state splitting, static reduction, orthogonal
projection, and completion of squares, we show that the
optimal strategy is linear and certainty equivalent. The
structure of the optimal strategy also shows that there is a
two-way separation between estimation and control.
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