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Abstract: We consider a static team problem in which agents observe correlated Gaussian
observations and seek to minimize a quadratic cost. It is assumed that the observations can be
split into two parts: common observations that are observed by all agents and local observations
that are observed by individual agents. It is shown that the optimal strategies are affine and
the corresponding gains can be determined by solving appropriate systems of linear equations.
Two structures of optimal strategies are identified. The first may be viewed as a common-
information based solution; the second may be viewed as a hierarchical control based solution.
A decentralized estimation example is presented to illustrate the results.
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1. INTRODUCTION

Decentralized decision making or team problems arise in
a variety of applications including networked control sys-
tems, sensor networks, communication networks, trans-
portation networks, and economics. In such problems,
there are multiple decision makers or agents that have
access to different information but aim to coordinate their
actions to minimize a common cost function. A team
problem is called static if the observations of agents are
not affected by the actions of other agents; otherwise, the
problem is called dynamic.

Static team problems were first investigated by Marschak
(1955); Radner (1962); Marschak and Radner (1972), who
identified necessary and sufficient conditions to determine
team optimal strategies. Subsequently, there has been
significant work on both static and dynamic teams. Sandell
and Athans (1974) extended these results to vector valued
observations; Krainak and Marcus (1982); Krainak et al.
(1982) extended them to the exponential cost criteria.

Ho and Chu (1972); Chu (1972) investigated linear
quadratic dynamic teams with partially nested informa-
tion structure and showed that they can be converted
to static teams with an appropriate change of variables.
Sandell and Athans (1974); Yoshikawa (1975) provided an
explicit solution to the linear quadratic dynamic team with
one-step delay sharing. Casalino et al. (1984) generalized
these results to general partially nested teams with a
common past. Yüksel (2009) generalized the results of Ho
and Chu to stochastically nested information structures.
Recently, Mahajan and Nayyar (2015) identified sufficient
statistics for best linear controllers for linear quadratic
dynamic teams with partial history sharing.

In addition to the above results for linear quadratic teams,
other variations of decentralized control problems have
also been considered in the literature. These include mod-
els with non-linear Markovian dynamics, H2/H∞ models
with sparsity constraints, amongst others. We refer the
reader to Mahajan et al. (2012) for details.

In this paper, we investigate the following question. Before
the system starts running, suppose it is possible to build an
observation channel and broadcast its measurements to all
agents. What is the value of such common information?We
investigate this question under the assumptions that the
observations are jointly Gaussian and the cost is quadratic.

To answer this question, let J∗ denote the optimal perfor-
mance when the additional common observation channel
is available and let J◦ denote the optimal performance
when such a channel is not available. Then, the value of
the additional common information is J◦ − J∗ (i.e., it is
beneficial to build the common observation channel if it
costs less than J◦ − J∗).

We develop two methods to efficiently compute the opti-
mal strategy and the optimal performance for teams with
common information. The first approach is inspired by the
common information approach of Nayyar et al. (2013). We
view the system from the point of view of a virtual agent
that has access to the common observations. This virtual
agent solves a static team problem where the means and
covariances of the observations are the conditional means
and covariances given the common information.

The second approach is a hierarchical control approach in
which agents choose a part of their action based on their lo-
cal observations and a virtual coordinator provides a linear
correction to these local actions. The hierarchical control
approach has interesting implications for the implementa-
tion of the optimal solution. Instead of transmitting the
measurements of the common observation channel to all
agents, a coordinator may only transmit a small correction
term to each agent. When the common observation is
high-dimensional (e.g., a video), communicating corrective
terms instead of the common observations may lead to
substantially smaller communication overhead.

The rest of the paper is organized as follows. In Sec. 2,
we describe the model and the main results. In Sec. 3, we
present an example of decentralized estimation. We prove
the main results in Sec. 4 and conclude in Sec. 5.



Notation

Given a matrix A, Aij denotes its (i, j)-th element, A⊺

denotes its transpose, vec(A) denotes the column vector
of A formed by stacking the columns of A on top of each
other. Given matrices A and B with the same number
of columns, rows(A,B) denotes the matrix obtained by
stacking matrix B under A. E[·] denotes the expectation
of a random variable. R denotes the set of real numbers.

2. STATIC TEAMS WITH COMMON INFORMATION

2.1 Model and Problem Formulation

Assume the system consists of n agents that are indexed
by the set N = {1, . . . , n}. We use N0 to denote the set
{0, 1, . . . , n}.

Let (x, y0, y1, . . . , yn) be jointly Gaussian random variables

where x ∈ R
dx and yi ∈ R

di
y for i ∈ N0. Let

E[x] = x̄, E[yi] = ȳi, for i ∈ N0

cov(x, yi) = Θi, cov(yi, yj) = Σij , for i ∈ N0.

Agent i, i ∈ N , observes (y0, yi) and chooses ui ∈ R
di
u

according to a decision rule gi, i.e., ui = gi(y0, yi). The
performance is measured by the following cost function:

c(x, u1, . . . , un) =
∑

i∈N

∑

j∈N

u
⊺

i Rijuj + 2
∑

i∈N

u
⊺

i Pix, (1)

where {Rij}i,j and {Pi}i∈N are matrices of appropriate di-
mensions. For ease of notation, define u = vec(u1, . . . , un),
P = rows(P1, . . . , Pn), Θ = rows(Θ1, . . . ,Θn),

R =







R11 · · · R1n

...
. . .

...
Rn1 · · · Rnn






and Σ =







Σ11 · · · Σ1n

...
. . .

...
Σn1 · · · Σnn






.

Then, the cost (1) may be written succinctly as

c(x, u) = u⊺Ru+ 2u⊺Px. (2)

Assume the following:

(A1) The matrix R is symmetric and positive definite.
(A2) The parameters N , P , R, Θ, and Σ are common
knowledge to all agents.

We call the following optimization problem as static team
with common information.

Problem 1. Assuming (A1) and (A2) and given the joint
distribution of (x, y0, y1, . . . , yn) and the cost matrices P
and R, choose decision rules g∗ = (g∗1 , . . . , g

∗

n) such that

J∗ := J(g∗) = min
g

J(g)

where J(g) = E
g[c(x, u)] and c(·, ·) is defined in (1).

2.2 Main results

Define

x̂0 = E[x | y0] = x̄+Θ0Σ
−1
00 (y0 − ȳ0),

and for i, j ∈ N ,

ŷi = E[yi | y0] = ȳi +Σi0Σ
−1
00 (y0 − ȳ0),

Θ̂i = cov(x, yi | y0) = Θi −Θ0Σ
−1
00 Σ0i,

Σ̂ij = cov(yi, yj | y0) = Σij − Σi0Σ
−1
00 Σ0j .

Theorem 1. In Problem 1, we have the following:

(1) The optimal control laws are given by

ui = Li(yi − ŷi) +Hix̂0, ∀i ∈ N. (3)

(2) Alternatively, by substituting the value of ŷi and x̂0

in (3), the optimal control laws may be written as

ui = Li(yi − ȳi) +Gi(y0 − ȳ0) +Hix̄, ∀i ∈ N, (4)

where Gi =
(

− LiΣi0 +HiΘ0

)

Σ−1
00 .

(3) The corresponding gains are computed as follows.
Define H = rows(H1, . . . , Hn), L = vec(L1, . . . , Ln),

η̂ = vec(P1Θ̂1, . . . , PnΘ̂n), and Γ̂ = [Γ̂ij ]i,j∈N where

Γ̂ij = Σ̂ij ⊗Rij . Then,

H = −R−1P and L = −Γ̂−1η̂. (5)

(4) The optimal cost is given by

J∗ = −η̂⊺Γ̂−1η̂ − x̂
⊺

0P
⊺R−1Px̂0

= −η̂⊺Γ̂−1η̂ − x̄⊺P ⊺R−1Px̄− Tr(Θ0Σ
−1
00 Θ

⊺

0P
⊺R−1P ).

Theorem 1 provides two structures of the optimal con-
trol laws. The first structure, which is given by (3), may
be viewed as a common-information based solution. In
particular, consider a static team problem with n agents
where the true state of the world is x̊ and agent i, i ∈ N ,
observes ẙi where (̊x, ẙ1, . . . , ẙn) are jointly Gaussian such
that E[̊x] = E[x | y0], E[̊yi] = E[yi | y0], cov(̊x, ẙi) =
cov(x, yi | y0), and cov(ẙi, ẙj) = cov(yi, yj | y0). From Rad-
ner (1962), the optimal solution of such a static team
is given by (3) and the gains {Li}i∈N and {Hi}i∈N are
computed as specified in Theorem 1.

The above argument is not a proof of Theorem 1 because
we have not proved that the system viewed from the point
of view of the common information is equivalent to the
original system. A formal proof of Theorem 1 is given in
Sec. 4. Nonetheless, viewing the system from the point of
view of common information provides a way to interpret
the results of Theorem 1.

The second structure of the optimal controller, which is
given by (4), may be viewed as a hierarchical control based
solution. In particular, consider a hierarchical control
system in which n “lower-level” agents observe yi and
choose a “local control action”, ũi and a “higher-level”
coordinator that observes y0 and sends “global correction
signals” vi to agent i. Agent i then chooses its control
action as

ui = ũi + vi.

Theorem 1 states that the optimal local control is

ũi = Li(yi − ȳi) +Hix̄

while the optimal correction signal is

vi = Gi(y0 − ȳ0).

Note that the gains {Li}i∈N , {Hi}i∈N of the local control
and the gains {Gi}i∈N of the global correction depend on
the statistical information of all the agents.

Another way to view the result of Theorem 1 is as follows.
For i, j ∈ N , define

x̂i = E[x | yi] = x̄+ΘiΣ
−1
ii (yi − ȳi),

x̆i = E[x | yi − ŷi] = x̄+ Θ̂iΣ̂
−1
ii (yi − ŷi),

Θ̆i = cov(x, x̆i) = Θ̂iΣ̂
−1
ii Θ̂⊺

i ,

Σ̆ij = cov(x̆i, x̆j) = Θ̂iΣ̂
−1
ii Σ̂ijΣ̂

−1
jj Θ̂

⊺

j .



Corollary 2. In Problem 1:

(1) The optimal strategy may be written as

ui = Fi(x̆i − x̄) +Hix̂0, ∀i ∈ N. (6)

(2) Alternatively, by substituting the value of x̆i in (6),
the optimal control laws may be written as

ui = F̂i(x̂i − x̄) + Ĝi(x̂0 − x̄) +Hix̄, ∀i ∈ N, (7)

where F̂i = FiΘ̂iΣ̂
−1
ii ΣiiΘ

−1
i and Ĝi = Hi −

FiΘ̂iΣ̂
−1
ii Σi0Θ

−1
0 .

(3) The corresponding gains are computed as follows.
Hi is given by (5). Define F = vec(F1, · · · , Fn),

η̆ = vec(P1Θ̆1, . . . , PnΘ̆n), and Γ̆ = [Γ̆ij ]i,j∈N where

Γ̆ij = Σ̆ij ⊗Rij . Then,

F = −Γ̆−1η̆. (8)

(4) Furthermore, the optimal cost is given by

J∗ = −η̆⊺Γ̆−1η̆ − x̂
⊺

0P
⊺R−1Px̂0.

The result is obtained by substituting yi−ŷi = Σ̂iiΘ̂
−1
i (x̆i−

x̄) in (3).

2.3 Comparison with Radner’s results

When the common information is absent (i.e., y0 is inde-
pendent of (x, y1, . . . , yn)), Problem 1 is the same as the
static team problem investigated by Radner (1962), who
showed the following:

Theorem 3. (Radner (1962)). In Problem 1, if y0 is inde-
pendent of (x, y1, . . . , yn) (i.e., Θ0 = 0 and for i ∈ N ,
Σi0 = 0), then the optimal control laws are given by

ui = L◦

i (yi − ȳi) +H◦

i x̄ (9)

where the gains {L◦

i }i∈N and {H◦

i }i∈N are computed
as follows. Define H◦ = rows(H◦

1 , . . . , H
◦

n), L◦ =
vec(L◦

1, . . . L
◦

n), η◦ = vec(P1Θ1, . . . , PnΘn), and Γ◦ =
[Γ◦

ij ]i,j∈N where Γ◦

ij = Σij ⊗Rij . Then,

H◦ = −R−1P and L◦ = −(Γ◦)−1η◦. (10)

Furthermore, the optimal cost is given by

J◦ = −η◦(Γ◦)−1η◦ − x̄P ⊺R−1Px̄.

Note that the gains {H◦

i }i∈N are exactly the same {H}i∈N

defined in Theorem 1.

It is possible to directly use Theorem 3 to solve Problem 1.
The observation of each agent is (y0, yi). Therefore, the
optimal control law is of the form

ui = L◦

i

[

y0 − ȳ0
yi − ȳi

]

+Hix̄.

Such a naive solution requires more calculations than
the solution given in Theorem 1. In particular, define
du =

∑

i∈N diu, dl =
∑

i∈N diu × diy, and d◦l =
∑

i∈N diu ×

(d0y+diy). Observe that d◦l = dl+N(du×d0y). To obtain the
gains {L◦

i }i∈N as argued above, we need to solve a system
of d◦l linear equations; to obtain the gains {Li}i∈N using
the method of Theorem 1, we need to solve a system of dl
linear equations. Thus, the method of Theorem 1 is more
efficient than the naive method described above.

It is also possible to rewrite the result of Theorem 3 in the
form of Corollary 2 as follows.

Corollary 4. In Problem 1, if y0 is independent of (x, y1,
. . . , yn)(i.e., Θ0 = 0 and for i ∈ N , Σi0 = 0), then the
optimal control laws are given by

ui = F ◦

i (x̂i − x̄) +H◦

i x̄ (11)

where the gains {F ◦

i }i∈N and {H◦

i }i∈N are computed
as follows. Define H◦ = rows(H◦

1 , . . . , H
◦

n), F ◦ =

vec(F ◦

1 , . . . F
◦

n), η̂◦ = vec(P1Θ
◦

1, . . . , PnΘ
◦

n), and Γ̂◦ =

[Γ̂◦

ij ]i,j∈N where Γ̂◦

ij = Σ◦

ij ⊗ Rij , Θ
◦

i = ΘiΣ
−1
ii Θ⊺

i , and

Σ◦

ij = ΘiΣ
−1
ii ΣijΣ

−1
jj Θ

⊺

j . Then,

H◦ = −R−1P and F ◦ = −(Γ̂◦)−1η̂◦. (12)

Furthermore, the optimal cost is given by

J◦ = −η̂◦(Γ̂◦)−1η̂◦ − x̄⊺P ⊺R−1Px̄.

As before, directly using Corollary 4 to solve Problem 1
requires more calculations that the solution given by
Corollary 2. In particular, define dm =

∑

i∈N diy and

d0m =
∑

i∈N (diy +d0y). Observe that d0m = dm+Nd0y. Note

that matrix Σ◦ is d0m × d0m while matrix Σ̆ is dm × dm.

3. AN ILLUSTRATIVE EXAMPLE:
DECENTRALIZED ESTIMATION

As an illustrative example of the static team model with
common information, we consider a decentralized estima-
tion problem. Suppose there is a random variable x ∈ R

dx

of interest. There are n agents. Agent i, i ∈ N , observes

(y0, yi) where for k ∈ N0, yk = Ckx + wk, yk, wk ∈ R
dk
y

and Ck is a matrix of appropriate dimension. We assume
that (x,w0, . . . , wn) are independent; x ∼ N (0,Σx) and
wi ∼ N (0,Σi

w), i ∈ N0.

After observing (y0, yi), agent i generates an estimate
ui ∈ R

dx of x. The estimation error depends on how close
the estimates are to the true state x and how close are the
estimates of “neighboring” agents.

To make the notion of neighbors precise, suppose there
is an undirected graph G where nodes are indexed by N .
For each node i ∈ N , let Ni denote the set of neighbors
of i. There are “weight” matrices Mii associated with each
node and “weight” matrices Mij associated with each edge
(Note that Mij = Mji). It is assumed that all weight
matrices are positive definite. Then, the estimation error
is measured by

c(x, u1, . . . , un) =
∑

i∈N

(x− ui)
⊺Mii(x− ui)

+
∑

i∈N

∑

j∈Ni,j>i

(ui − uj)
⊺Mij(ui − uj). (13)

See Figure 1 for an example.

The above model is a special case of the static team model
described in Sec 2.1. In particular, x̄ = 0 and for i, j ∈ N0,
ȳi = 0 and

Θi = cov(x, yi) = ΣxC
⊺

i

and

Σij = cov(yi, yj) =

{

CiΣxC
⊺

i +Σi
w, if i = j

CiΣxC
⊺

j , if i 6= j

Note that Σij can be succinctly written as CiΣxC
⊺

j +Σi
wδij ,

where δij is the Kronecker delta function. Then,
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Fig. 1. An example of a distributed estimation problem in
which N = {1, 2, 3}, N1 = {2, 3}, N2 = N3 = {1}.
Suppose dx = diy = 1 and M11 = M22 = M33 =
M12 = M21 = M13 = M31 = 1. Then, the cost (13) is

(x−u1)
2+(x−u2)

2+(x−u3)
2+(u1−u2)

2+(u1−u3)
2.

Hence, the objective is to minimize the sum of (i) the
square error between the estimates generated by the
agents and the true x; and (ii) the square error
between between the estimates of agents 1 and 2 and
agents 1 and 3.

x̂0 = E[x | y0] = ΣxC
⊺

0 (C0ΣxC
⊺

0 +Σ0
w)

−1y0,

and for i, j ∈ N ,

ŷi = E[yi | y0] = CiΣxC
⊺

0 (C0ΣxC
⊺

0 +Σ0
w)

−1y0,

Θ̂i = cov(x, yi | y0) = ΣxC
⊺

i

− ΣxC
⊺

0 (C0ΣxC
⊺

0 +Σ0
w)

−1C0ΣxC
⊺

i ,

Σ̂ij = cov(yi, yj |y0) = CiΣxC
⊺

j +Σi
wδij

− CiΣxC
⊺

0 (C0ΣxC
⊺

0 +Σ0
w)

−1C0ΣxC
⊺

j ,

x̂i = E[x | yi] = ΣxC
⊺

i (CiΣxC
⊺

i )
−1yi,

x̆i = E[x | yi − ŷi] = Θ̂iΣ̂
−1
ii (yi − ŷi),

Θ̆i = cov(x, x̆i) = Θ̂iΣ̂
−1
ii Θ̂⊺

i ,

Σ̆ij = cov(x̆i, x̆j) = Θ̂iΣ̂
−1
ii Σ̂ijΣ̂

−1
jj Θ̂

⊺

j .

By expanding (13) and comparing it with (1), we get that
P = rows(−M11, . . . ,−Mnn) and R = [Rij ]i,j∈N , where

Rij =















Mii +
∑

j∈Ni

Mij , if i = j

−Mij , if j ∈ Ni

0, otherwise.

Note that R is equivalent to the Laplacian of the cost
graph (with additional self loops of weight Mii at each
node i). For example, for the example of Fig. 1, P =

rows(−1,−1,−1) and R =
[

3 −1 −1
−1 2 0
−1 0 2

]

.

Now, by Theorem 1 and Corollary 2, the optimal estima-
tion strategy for the above model is given by

ui = Li(yi − ŷi) +Hix̂0 or ui = Fix̆i +Hix̂0

where the gains {Hi}i∈N , {Fi}i∈N and {Li}i∈N are com-
puted as in Theorem 1 and Corollary 2. Or equivalently,
the optimal estimation strategy is given by

ui = Liyi +Giy0 or ui = F̂ix̂i + Ĝix̂0

where Gi = (−LiΣi0 + HiΘ0)Σ
−1
00 , F̂i = FiΘ̂iΣ̂

−1
ii ΣiiΘ

−1
i

and Ĝi = Hi − FiΘ̂iΣ̂
−1
ii Σi0Θ

−1
0 .

Furthermore, the optimal cost is given by

J∗ = −η̂⊺Γ̂−1η̂−Tr(Θ0Σ
−1
00 Θ

⊺

0P
⊺R−1P ) +

∑

i∈N

Tr(RiiΣx),

where η̂ and Γ̂ are defined as in Theorem 1.

Now, we numerically compute the optimal strategies and
optimal performance for some specific cases. We consider a
system with n = 4 nodes for three different cost functions,
whose graphs are shown in Fig. 2.

...

3

..

2

..

1

..

4

(a)

3

21

4

(b)

3

21

4

(c)

Fig. 2. Three different cost functions for the decentralized
estimation problem with 4 agents.

We assume that

• dx = diy = diu = 1.

• For i ∈ N , Ci = 1, Σx = 1, Σi
w = σ2.

• Σ0
w = σ2

0 .
• For i ∈ N , Mii = 1 and for i, j ∈ N , whenever the
edge (i, j) exists, Mij = 1.

Thus, we have two parameters: the variance σ2 of local
observations, and the variance σ2

0 of the common observa-
tions. We will evaluate the performance of the system for
different choice of these parameters.

We consider two cases: without common information (i.e.,
when y0 is not available to the nodes) and with common
information. For the case without common information,
the optimal estimate is

ui = L◦

i yi or ui = F ◦

i x̂i

while for the case with common information, the optimal
estimate is

ui = Liyi +Giy0 or ui = F̂ix̂i + Ĝix̂0.

The corresponding optimal performances are denoted by
J◦ and J∗.

When σ2 = σ2
0 = 1, the optimal solution is as follows:

Cost (a)
• For the case without common information J◦ = 3
and

ui =
1
4yi, or ui =

1
2 x̂i, i ∈ N.

• For the case with common information J∗ = 12
7 ≈

1.7143 and

ui =
1
7yi +

3
7y0 or ui =

2
7 x̂i +

6
7 x̂0, i ∈ N.

• Thus, the value of the common information channel
is J◦ − J∗ = 9

7 ≈ 1.2857.
Cost (b)

• For the case without common information J◦ =
59
19 ≈ 3.1053 and

ui =
4
19yi or ui =

8
19 x̂i, i ∈ {1, 3},

ui =
9
38yi or ui =

9
19 x̂i, i ∈ {2, 4}.

• For the case with common information J∗ = 166
95 ≈

1.7474 and

ui =
11
95yi +

42
95y0 or ui =

22
95 x̂i +

84
95 x̂0, i ∈ {1, 3},

ui =
13
95yi +

41
95y0 or ui =

26
95 x̂i +

82
95 x̂0, i ∈ {2, 4}.
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J
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Fig. 3. Plot of J∗ (and J◦) as a function of σ2 for different
values of σ2

0 . Note that J◦ may be thought of the
limiting case as σ2

0 → ∞.

• Thus, the value of the common information channel
is J◦ − J∗ = 129

95 ≈ 1.3579.
Cost (c)

• For the case without common information J◦ =
16
5 = 3.2 and

ui =
1
5yi or ui =

2
5 x̂i, i ∈ N.

• For the case with common information J∗ = 16
9 ≈

1.7778 and

ui =
1
9yi +

4
9y0 or ui =

2
9 x̂i +

8
9 x̂0, i ∈ N.

• Thus, the value of the common information channel
is J◦ − J∗ = 64

45 ≈ 1.4222.

Next, we plot J∗ (and J◦) as a function of σ2 for different
values of σ2

0 . See Fig. 3 for details.

4. PROOF OF THE MAIN RESULTS

The main idea of the proof is similar to that of Radner
(1962). However, instead of working with the observations
(y0, yi), we work with the orthogonal random variables
(y0, yi − ŷi).

Consider agent i ∈ N and arbitrarily fix the strategy g−i

of all agents other than i. A necessary condition for the
strategy (gi, g−i) to be globally optimal is that gi is the
best response strategy to g−i, i.e., for any y0 ∈ R

0
y, yi ∈ R

i
y,

and ûi ∈ R
i
u and uj = gj(y0, yj), j ∈ N , we have that

E
g
−i [c(x, ui, u−i)|y0, yi] ≤ E

g
−i [c(x, ûi, u−i)|y0, yi].

A sufficient condition for the above to hold is
∂

∂ui

E
g
−i [c(x, ui, u−i)|y0, yi] = 0. (14)

Assuming that we can interchange differentiation and
expectation, we get that

LHS of (14) = E
g
−i

[

∂

∂ui

c(x, ui, u−i)

∣

∣

∣

∣

y0, yi

]

= E
g
−i

[

∂

∂ui

[

∑

k∈N

∑

j∈N

u
⊺

kRkjuj + 2
∑

k∈N

u
⊺

kPkx

]
∣

∣

∣

∣

y0, yi

]

= 2E
g
−i

[

∑

j∈N

Rijuj + Pix

∣

∣

∣

∣

y0, yi

]

Thus, a necessary condition for strategy g to be optimal is
that for all i ∈ N and all yk ∈ Rdk

y
, k ∈ N0, we have that

∑

j∈N

RijE[uj |y0, yi] + PiE[x|y0, yi] = 0. (15)

Hence, a necessary condition for the strategy described in
Theorem 1 to be optimal is that for all i ∈ N and all

y0 ∈ R
d0

y , yi ∈ R
di
y ,

∑

j∈N

RijE[Lj(yj − ŷj) +Hj x̂0|y0, yi]

+ PiE[x|y0, yi] = 0. (16)

The argument so far is similar to Radner (1962). Now, to
verify (16), we exploit the orthogonal projection theorem.
Recall that ŷi = E[yi|y0] and (x, y0, y1, . . . , yn). Therefore,
(x− x̂0) and (yi − ŷi) are both orthogonal to y0. Hence,

E[yj − ŷi|y0, yi] = E[yj − ŷj |y0] + E[yj − ŷj |yi − ŷi]

= Σ̂jiΣ̂
−1
ii (yi − ŷi), (17)

E[x̂0|y0, yi] = E[x̂0|y0] + E[x̂0|yi − ŷi] = x̂0, (18)

and

E[x|y0, yi] = E[x|y0] + E[x|yi − ŷi]

= x̂0 + Θ̂iΣ̂
−1
ii (yi − ŷi). (19)

Substituting (17)–(19) in (16), we get that a necessary
condition for the strategy described in Theorem 1 to be

optimal is that for all i ∈ N and all y0 ∈ R
d0

y , yi ∈ R
di
y ,

[

∑

j∈N

RijLjΣ̂ji + PiΘ̂i

]

Σ̂−1
ii (yi − ŷi)

+
[

∑

i∈N

RijHj + Pi

]

x̂0 = 0. (20)

For the above equation to hold for all realizations of (yi −
ŷi) and x̂0, it must be the case that both terms in the
square bracket are zero, i.e., for all i ∈ N ,

∑

j∈N

RijLjΣ̂ji + PiΘ̂i = 0, (21)

and
∑

i∈N

RijHj + Pi = 0. (22)

These set of equations can be further simplified as follows.
To simplify the equations for the gains {Hi}i∈N , com-
bine (22) for all i ∈ N to get RH+P = 0, or equivalently,
H = −R−1P .

To simplify the equations for the gains {Li}i∈N , vectorize
both sides of (21) and use vec(ABC) = (C⊺⊗A)×vec(B)
to obtain

∑

j∈N

(Σ̂ij ⊗Rij) vec(Lj) + vec(PiΘ̂i) = 0.

Subsitituting Γ̂ij = Σ̂ij ⊗ Rij and η̂i = vec(PiΘ̂i), we get

Γ̂L+ η̂ = 0, or equivalently, L = −Γ̂−1η̂.

Thus, we have proved parts 1 and 3 of the Theorem. Part 2
follows from directly substituting the result of part 1. To
prove the result of part 4, observe that

J∗ = E
[

E[u⊺Ru+ 2u⊺Px|y0]
]

. (23)

Now consider



E[u⊺Ru+ 2u⊺Px|y0]

= E[
(

L(y − ŷ) +Hx̂0

)⊺

R
(

L(y − ŷ) +Hx̂0

)

|y0]

+ 2E[
(

L(y − ŷ) +Hx̂0

)⊺

Px|y0]

= E[(y − ŷ)⊺L⊺RL(y − ŷ)|y0] + x̂
⊺

0H
⊺RHx̂0

+ 2E[(y − ŷ)⊺L⊺Px|y0] + 2E[x̂⊺

0HPx|y0] (24)

We split the above sum into two parts: the first part is

E[(y − ŷ)⊺L⊺RL(y − ŷ)|y0] + 2E[(y − ŷ)⊺L⊺Px|y0]

=
∑

i∈N

∑

j∈N

E
[

(yi − ŷi)
⊺L

⊺

i RijLj(yj − ŷj)
∣

∣ y0
]

+ 2
∑

i∈N

E
[

(yi − ŷi)
⊺L

⊺

i Pix
∣

∣ y0
]

(a)
=

∑

i∈N

∑

i∈N

Tr(LiΣ̂ijL
⊺

jRji) + 2
∑

i∈N

Tr(LiΘ̂
⊺

i P
⊺

i )

=
∑

i∈N

Tr
(

Li

(

∑

j∈N

Σ̂ijL
⊺

jRji + 2Θ̂⊺

i P
⊺

i

))

(b)
=

∑

i∈N

Tr(LiΘ̂
⊺

i P
⊺

i )
(c)
=

∑

i∈N

vec(Li)
⊺ vec(PiΘ̂i)

= L⊺η̂ = −η̂⊺Γ̂−1η̂, (25)

where (a) uses the following: for any vectors a and
b and matrices A and B of appropriate dimensions,
E[a⊺A⊺Bb] = E[Tr(a⊺A⊺Bb)] = E[Tr(Aab⊺B⊺)] =
Tr(AE[ab⊺]B⊺); (b) uses (21); and (c) uses the follow-
ing: for any matrices A and B of appropriate dimensions
Tr(AB⊺) = vec(A)⊺ vec(B).

The second part of (24) is

x̂
⊺

0H
⊺RHx̂0 + 2E[x̂⊺

0H
⊺Px|y0]

= x̂
⊺

0H
⊺RHx̂0 + 2x̂⊺

0H
⊺Px̂0 = x̂

⊺

0H
⊺(RH + 2P )x̂0

= x̂
⊺

0H
⊺Px̂0 = −x̂

⊺

0P
⊺R−1Px̂0. (26)

where the last two equalities use RH + P = 0.

Subsituting (25) and (26) in (24), we get

E[u⊺Ru+ 2u⊺Px|y0] = −η̂⊺Γ̂−1η̂ − x̂
⊺

0P
⊺R−1Px̂0. (27)

Substituting (27) in (23), we get

J∗ = −E[η̂⊺Γ̂−1η̂,+x̂
⊺

0P
⊺R−1Px̂0

]

= −η̂⊺Γ̂−1η̂ − x̄⊺P ⊺R−1Px̄

− E[(y0 − ȳ0)
⊺Σ−1

00 Θ
⊺

0P
⊺R−1PΘ0Σ

−1
00 (y0 − ȳ0)]

= −η̂⊺Γ̂−1η̂ − x̄⊺P ⊺R−1Px̄− Tr(Θ0Σ
−1
00 Θ

⊺

0P
⊺R−1P ).

This completes the proof of part 4.

5. CONCLUSION

We investigate static teams with common information and
present two structures of optimal strategies. The complex-
ity of the proposed solution methodology is significantly
less that naively using the existing results for static teams.

The first structure of optimal strategies can be interpreted
as follows. For the given realization of the common in-
formation, all agents compute the conditional means and
covariances given the common information and compute
the gains corresponding to this conditional system. The
equations describing the gains depends only on the con-
ditional covariances. Since all the random variables are
Gaussian, the conditional covariances do not depend on

the realization of the common information and, therefore,
neither do the optimal gains.

By a simple algebraic manipulation of the structure of the
optimal controller, it can also be viewed as a hierarchical
controller where each agent receives a “global correction
signal” that it applies to its local control action. Such an
implementation is more efficient if the common informa-
tion is a high-dimensional signal (e.g., video).

The solution methodology developed in this paper could
be useful for dynamic team problems as well. We plan to
explore that direction in the future.
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