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Abstract— This tutorial paper provides a comprehensive
characterization of information structures in team decision
problems and their impact on the tractability of team optimiza-
tion. Solution methods for team decision problems are presented
in various settings where the discussion is structured in two
foci: The first is centered on solution methods for stochastic
teams admitting state-space formulations. The second focus is
on norm-optimal control for linear plants under information
constraints.

I. INTRODUCTION

A decentralized control system has structural properties

that may restrict the storage, processing and the dissemina-

tion of information in the feedback loop. An example would

be a large-scale power-grid with multiple coupled generators

and consumers. Here, the decision center at each generator

has access to only local measurements and based on these it

must regulate variables that may impact the entire grid.

Decentralization may be imposed as a way to achieve

scalability, by constraining the connectivity of the underlying

communication network and the computational complexity

of the control algorithms. New methods for the analysis of

decentralized systems have also been proposed that focus

on the detrimental effects that real communication networks

may introduce, such as bit-rate limits [1] and packet losses

[2].

As illustrated in [3], [4], the information structure may

determine the tractability of optimal decentralized control

problems, and research on this topic remains quite active ever

since Witsenhausen [5] and Ho [6] considered a considerable

investigation of information structures in the context of team

decision theory.

A. Paper organization

This paper focuses on the impact of information structures

on the tractability of computing optimal decentralized con-

trollers. It is centered on two subclasses of problems. The
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first pertains to the design of optimal team decision systems

specified using the state-space formalism, while the second

discusses the design of optimal policies when the system

and controller are represented in linear operatorial form and

decentralization is specified via sparsity constraints.

The paper has the following three main Sections:

• Section II: Introduces the main concepts and definitions

that allow the classification of information structures.

• Section III: Focuses on optimal team decision problems

in state-space form.

• Section IV: Discusses the design of optimal controllers

when the decentralization constraint is imposed via

subspace constraints.

II. BASIC CONCEPTS AND DEFINITIONS

A decentralized control system may either be sequential or

non-sequential. In a sequential system, the decision makers

(DMs) act according to an order that is specified before the

system starts running; while in a non-sequential system the

DMs act in an order that depends on the realization of the

system uncertainty and the control actions of other DMs. It

is much more difficult to analyze and formulate a well-posed

optimal control problem for non-sequential systems because

we need to ensure that it is causal and deadlock free. Here,

we restrict attention to sequential systems. We start with an

abstract model of decentralized control systems, called the

intrinsic model, that was proposed by Witsenhausen [7]. We

present a version of the intrinsic model that is restricted to

sequential systems. Later we define state-space and input-

output models that are also restricted to sequential systems.

We refer the reader to [7]–[11] for more details on non-

sequential systems.

According to the instrinsic model, any (finite horizon)

sequentail team problem can be characterized by a tuple
(
(Ω,F), N , {(Ui,U i), i = 1, . . . , N}, {J i, i = 1, . . . , N}

)

or equivalently by a tuple
(
(Ω,F), N , {(Ui,U i), i =

1, . . . , N}, {(Ii, Ii), i = 1, . . . , N}
)

where

• (Ω,F) is a measurable space representing all the uncer-

tainty in the system. The realization of this uncertainty

is called the primitive variable of the system. Ω denotes

all possible realizations of the primitive random variable

and F is a sigma-algebra over Ω.

• N denotes the number of decision makers (DMs) in the

system. Each DM takes only one action. If the system

has a control station that takes multiple actions over

time, it is modeled as a collection of DMs, one for

each time instant.

• {(Ui,U i), i = 1, . . . , N} is a collection of measurable

spaces representing the action space for each DM. The
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control action ui of DM i takes value in U
i and U i is

a sigma-algebra over Ui.

• {J i, i = 1, . . . , N} is a collection of sets in F and

represents the information available to a DM to take an

action. Sometimes it is useful to assume that the infor-

mation is available in terms of an explicit observation

that takes values in a measurable space (Ii, Ii). Such

an observation is generated by a measurable observation

function from Ω×U
1×· · ·×U

i−1 to I
i. The collection

{J i, i = 1, . . . , N} or {(Ii, Ii), i = 1, . . . , N} is called

the information structure of the system.

• A control strategy (also called a control policy or

design) of a decentralized control system is given by

a collection {γi, i = 1, . . . , N} of functions where γi :
(Ii, Ii) → (Ui,U i) (or equivalently, γi : (Ω,J i) →
(Ui,U i).

Although, there are different ways to define a control

objective of a decentralized system, we focus on minimizing

a loss function. Other performance measures include mini-

mizing regret, minimizing risk, ensuring safety, and ensuring

stability. We will assume that we are given a probability

measure P on (Ω,F) and a real-valued loss function ℓ on

(Ω×U
1×· · ·×U

N ,F⊗U1⊗· · ·⊗UN ) =: (H,H). Any choice

γ = (γ1, . . . , γn) of the control strategy induces a probabil-

ity measure P γ on (H,H). We define the performance J(γ)
of a strategy as the expected loss (under probability measure

P γ), i.e.,

J(γ) = Eγ [ℓ(ω, u1, . . . , un)]

where ω is the primitive variable (or the primitive random

variable, since a measure is specified) and ui is the control

action of DM i.

As an example, consider the following model of a system

with two decision makers which is taken from [12]. Let Ω =
{ω1, ω2, ω3}, F be the power set of Ω. Let the action space

be U
1 = {U(up), D(down)}, U

2 = {L(left), R(right)},

and U1 and U2 be the power sets of U1 and U2 respectively.

Let the information fields J 1 = {∅, {ω1}, {ω2, ω3},Ω} and

J 2 = {∅, {ω1, ω2}, {ω3},Ω}. (This information corresponds

to the non-identical imperfect (quantized) measurement set-

ting considered in [12]).

Suppose the probability measure P is given by P (ωi) =
pi, i = 1, 2, 3 and p1 = p2 = 0.3, p3 = 0.4, and the loss

function ℓ(ω, u1, u2) is given by

u2

L R

u1 U 1 0

D 3 1

ω : ω1 ↔ 0.3

u2

L R

U 2 3

D 2 1

ω2 ↔ 0.3

u2

L R

U 1 2

D 0 2

ω3 ↔ 0.4

For the above model, the unique optimal control strategy

is given by

γ1,∗(y1) =

{

U, y1 ∈ {ω1}

D, else

γ2,∗(y2) =

{

R, y2 ∈ {ω1, ω2}

L, else

A solution to the generalized sequential decentralized

stochastic control problem is very difficult. Most of the work

in the literature has concentrated on identifying solution

techniques for specific subclasses. Typically, these subclasses

are characterized on the basis of the information structure

of the system. We describe the most common classification

below.

A. Static and dynamic information structures

The simplest, and at first glance, the most critical, distinc-

tion is between static and dynamic information structures. An

information structure is called static if J i is F measurable

for all i, i.e., the observation of all DMs depends only

on the primitive random variable (and not on the control

actions of others). Systems that don’t have static information

structure are said to have dynamic information structure. In

such systems, some DMs influence the observations of others

through their actions. The authors of [13], [14] studied the

general properties of static information structures. One of

their strongest results is that when the primitive random

variable is Gaussian, observation functions are linear, and

the loss function is quadratic—i.e., the static LQG case—

affine control strategies are optimal. The result relies on

the convexity of the problem, and is explained later in

Section III.

Witsenhausen [15] showed that any dynamic decentralized

control system can be converted to a static decentralized

control system by an appropriate change of measures. How-

ever, very little is known regarding the solution of a non-

LQG static system; hence, the above transformation is not

practically useful.

B. Classical, quasiclassical and nonclassical information

structures

Centralized control systems are a special case of decentral-

ized control systems; their characterizing feature is central-

ization of information, i.e., any DM knows the information

available to all the DMs that acted before it, or formally,

J i ⊆ J i+1 for all i. Such information structures are called

classical.

A decentralized system is called quasiclassical or partially

nested if the following condition holds: whenever DM i can

influence DM j, then DM j must know the observations

of DM i, or more formally, J i ⊆ J j . Ho and Chu [16]

showed that when the primitive random variable is Gaussian,

observation functions are linear, and the loss function is

quadratic—i.e., the partially nested LQG case—affine control

laws are optimal. The result relies on showing that an invert-

ible linear transformation can convert the partially nested

LQG system into a static LQG system and then use the

results of the static LQG case. Not much is known regarding

other subclasses (non-LQG systems) of quasiclassical or

partially nested teams.

Any information structure that is not classical or quasi-

classical is called nonclassical.

Since classical information structures are effectively equiv-

alent to centralized control systems, they can be solved using
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techniques from centralized stochastic control. For example,

for state space models, we can use dynamic programming

to find optimal strategies (see Sec. III.D); for input-output

models, we can use convex parametrizations to find optimal

control strategies (see Sec. IV). In general, these techniques

do not work for nonclassical information structures. Many

researchers have investigated specific sub-classes of nonclas-

sical information structures, both for the state-space models

and for the input-output models. We present some of these

results for these models in the Sec. IV. Further results and

examples on information structures are available in [12].

III. STOCHASTIC TEAM PROBLEMS IN STATE-SPACE

FORM

In a state space model, we assume that the decentralized

control system has a state xt that is evolving with time.

The evolution of the state is controlled by the actions of the

control stations. We assume that the system has N control

stations where each control station i chooses a control action

ui
t at time t. The system runs in discrete time, either for finite

or infinite horizon.

Let X denote the space of realizations of the state xt, and

U
i denote the space of realization of control actions ui

t. Let

T denote the set of time for which the system runs.

The initial state x1 is a random variable and the state of

the system evolves as

xt+1 = ft(xt, u
1
t , . . . , u

N
t ;w0

t ) , t ∈ T , (1)

where {w0
t , t ∈ T } is an independent noise process that is

also independent of x1.

We assume that each control station i observes the follow-

ing at time t

yit = git(xt, w
i
t), (2)

where {wi
t, t ∈ T } are measurement noise processes that

are independent across time, independent of each other, and

independent of {w0
t , t ∈ T } and x1.

The above evolution does not completely describe the

dynamic control system, because we have not specified the

data available at each control station. In general, the data Iit
available at control station i at time t will be a function of all

the past system variables {x[1,t],y[1,t],u[1,t−1],w[1,t]}, i.e.,

Iit = ηit(x[1,t],y[1,t],u[1,t−1],w[1,t]), (3)

where we use the notation u = {u1, . . . , uN} and x[1,t] =
{x1, . . . , xt}. The collection {Iit , i = 1, . . . , N , t ∈ T }
comprises the observation variables which generate the in-

formation structure in the system.

When T is finite, say equal to {1, . . . , T}, the above model

is a special case of the sequential intrinsic model presented

above. The set {x1, w
0
t , w

1
t , . . . , w

N
t , t ∈ T } denotes the

primitive random variable with probability measure given

by the product measure of the marginal probabilities; the

system has N ×T DMs, one for each control station at each

time. DM (i, t) observes Iit and chooses ui
t. The information

sub-fields J k are determined by {ηit, i = 1, . . . , N , t ∈ T }.

Some important information structures are

1) Complete information sharing: In complete information

sharing, each DM has access to present and past mea-

surements and past actions of all DMs. Such a system

is equivalent to a centralized system.

Iit = {y[1,t],u[1,t−1]}, t ∈ T .

2) Complete measurement sharing: In complete measure-

ment sharing, each DM has access to the present and

past measurements of all DMs. Note that past control

actions are not shared.

Iit = {y[1,t]}, t ∈ T .

3) Delayed information sharing: In delayed information

sharing, each DM has access to n-step delayed mea-

surements and control actions of all DMs.

Iit =

{

{yi[t−n+1,t], u
i
[t−n+1,t−1]y[1,t−n],u[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

(4)

4) Delayed measurement sharing: In delayed measurement

sharing, each DM has access to n-step delayed mea-

surements of all DMs. Note that control actions are not

shared.

Iit =

{

{yi[t−n+1,t], u
i
[1,t−1],y[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

5) Delayed control sharing: In delayed control sharing,

each DM has access to n-step delayed control actions

of all DMs. Note that measurements are not shared.

Iit =

{

{yi[1,t], u
i
[t−n+1,t−1],u[1,t−n]}, t > n

{yi[1,t], u
i
[1,t−1]}, t ≤ n

6) Periodic information sharing: In periodic information

sharing, the DMs share their measurements and control

periodically after every k time steps. No information is

shared at other time instants.

Iit =







{yi[⌊t/k⌋k,t], u
i
[⌊t/k⌋k,t],y[1,⌊t/k⌋k],u[1,⌊t/k⌋k]},

t ≥ k

{yi[1,t], u
i
[1,t−1]}, t < k

7) Completely decentralized information: In a completely

decentralized system, no data is shared between the

DMs.

Iit = {yi[1,t], u
i
[1,t−1]}, t ∈ T .

In all the information structures given above, each DM

has perfect recall (PR), that is, each DM has full memory of

its past information. In general, a DM need not have perfect

recall. For example, a DM may only have access to its current

observation, in which case the information structure is

Iit = {yit}, t ∈ T . (5)

To complete the description of the team problem, we have

to specify the loss function. We will assume that the loss

function is of an additive form:

ℓ(x[1,T ],u[1,T ]) =
∑

t∈T

c(xt,ut) (6)
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where each term in the summation is known as the incre-

mental (or stagewise) loss.

The objective is to choose control laws γi
t such that ui

t =
γi
t(I

i
t) so as to minimize the expected loss (6). In the sequel,

we will denote the set of all measurable control laws γi
t under

the given information structure by Γi
t.

A. Solutions to Static Teams

Let J(γ) := E [c(ω, γ1(η1(ω)), . . . , γN (ηN (ω)))]. We say

that a policy γ∗ is person by person optimal if

J(γ∗) ≤ J(γ∗1, . . . , γ∗(k−1), β, γ∗(k+1), . . . ),

β ∈ Γk, k = 1, 2, . . . , N. (7)

A policy γ∗ is optimal if

J(γ∗) ≤ J(γ), for all γ ∈ Γ.

It has been observed by Radner [13] and Krainak et

al [17] that a static team problem with a loss (or cost)

function c(x, ·) which is (i) continuously differentiable in

the actions and (ii) strictly convex in the actions, admits an

optimal policy that satisfies local stationarity conditions. An

important application of the above result is the following

static Linear Quadratic Gaussian Problem: Consider a two-

controller system evolving in R
n with the following descrip-

tion: Let x1 be Gaussian and x2 = Ax1+B1u1
1+B2u2

1+w1

y11 = C1x1 + v11 ,

y21 = C2x1 + v21 ,

with w, v1, v2 zero-mean, i.i.d. disturbances. For ρ1, ρ2 > 0,

let the goal be the minimization of

J(γ1, γ2) = E

[

||x1||
2
2 + ρ1||u

1
1||

2
2 + ρ2||u

2
1||

2
2 + ||x2||

2
2

]

(8)

over the control policies of the form:

ui
t = µi

t(y
i
1), i = 1, 2.

For this problem, the cost function is convex in the actions

of the decision makers, and moreover, it is continuously

differentiable. Furthermore, linear policies are person by

person optimal since linear policies adopted by the other

decision makers reduce the problem to a standard Linear

Quadratic Gaussian cost optimization problem with partial,

Gaussian observations. Hence, the solution to this problem is

affine. This remarkable observation allows one to show that

optimal team policies are affine.

The above analysis is not applicable to stochastic dynamic

team problems with nonclassical information as we will see

in the next subsection. As discussed above, nonclassical

information structure (IS) arises if a Decision Maker (DM) i’s

action affects the information available to another DM j, who

however does not have access to the information available to

DM i based on which her action was constructed. Another

way, perhaps mathematically more precise way of stating

this is that the information sigma field of agent DM j is

dependent explicitly on the policy (decision rule, or control

law) of DM i.

In team problems with partially nested information, one

talks about precedence relationships among agents: an agent

Ai preceeds another agent Aj (or Ai communicates to Aj),

if the former agent’s actions affect the information of the

latter, in which case (to be partially nested) Aj has to have

the information based on which the action-generating policy

of Ai was constructed. Under quasi-classical information,

LQG stochastic team problems are tractable by conversion

into an equivalent static team problem, of the type discussed.

The team-optimal solution under this new (static) IS can then

be expressed in terms of the original IS. Examples of such

an indirect derivation for dynamic teams with quasi-classical

information are given in several papers, such as [16], [18],

[19]), see also [12].

B. Signaling and its effect on lack of convexity

What makes a large number of problems possessing the

nonclassical information structure difficult is the fact that

signaling is present: Signaling is the policy of communica-

tion through control actions. Under signaling, the decision

makers apply their actions to affect the information avail-

able at the other decision makers. In this case, the control

policies induce a probabilistic map (hence, a channel or a

stochastic kernel) from the exogenous random variable space

to the observation space of the signaled decision makers.

For the nonclassical case, the problem thus also features an

information transmission aspect, and the signaling decision

maker’s objective also includes the design of an optimal

measurement channel. In [20], it has been established that,

an optimal control problem is concave on the space of

information structures, viewed as stochastic kernels (see

also [12]). Hence, convexity hardly holds when there is a

signaling incentive.

To make this important issue more explicit, let us consider

the following example from [21]. Consider a two-controller

system evolving in R
n:

xt+1 = Axt +B1u1
t +B2u2

t + wt,

y1t = C1xt + v1t ,

y2t = C2xt + v2t ,

where w, v1, v2 are zero-mean, i.i.d. disturbances, and

A,B1, B2, C1, C2 matrices of appropriate dimensions. For

ρ1, ρ2 > 0, let the objective be the minimization of the cost

functional be a generalization of (8)

J = E

[( T∑

t=1

|xt|
2 + ρ1|u

1
t |

2 + ρ2|u
2
t |

2

)

+ ‖xT ‖
2

]

over control policies of the form:

ui
t = µi

t(y
i
[0,t], u

i
[0,t−1]), i = 1, 2; t = 0, 1, . . . , T − 1.

For a multi-stage problem (say with T = 2), unlike T = 1
in (8), the cost is in general no-longer convex in the action

variables of the controllers acting in the first stage t = 0. This

is because these actions might affect the estimation quality of

the other controller in the future stages, if one DM can signal

information to the other DM in one stage. We note that this
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condition is equivalent to C1AlB2 6= 0 or C2AlB1 6= 0 with

l+1 denoting the delay in signaling with l = 0 in the problem

considered. In particular, if the controller is allowed to apply

a randomized policy (for example by possibly using private

random information that it has from the past realizations),

this induces a conditional probability measure (channel) from

the external variables and the initial state of the system to

the observation variables at the other decision maker. The

optimization problem, as such, is not jointly convex in such

policies, and as such finding a fixed point to the stationarity

conditions in the optimal policies does not necessarily lead

to the conclusion that such policies are optimal. Even when

restricted to linear policies, the problem is not convex in

general.

C. LQG Problems Exhibiting Non-Classical Information

Structure

In the following, we discuss two important LQG type

problems with nonclassical information.

1) Transmission of Gaussian Source over a Gaussian

Channel under Various Information Structures: Consider the

transmission of a Gaussian source over a Gaussian relay

channel, as depicted in Figure 1.

Fig. 1. Gaussian relay channel.

We wish to minimize E [(x− x̂)2] over encoder and relay

encoder policies. We assume that x is Gaussian with zero

mean and variance σ2
x. The encoder mapping satisfies, se =

γ1(x) such that,

E [s2e] ≤ PS . (9)

The transmitted signal se is then observed in noise by the

relay node as y = se + ve, where ve is a zero-mean

independent Gaussian noise of variance Ne. The relay node

applies a measurable mapping γ2 on the received signal

to produce sr under the following average relay power

constraint,

E [s2r] ≤ PR. (10)

The signal sr is then transmitted over a Gaussian channel.

Accordingly the destination node receives z = sr+vr, where

{vr} is zero mean white Gaussian noise with variance Nr.

The decoder generates x̂ = g(z).
Some facts for this problem are as follows.

• If the relay is restricted to be linear, the optimal encoder

is linear from information theoretic arguments see [12]

• If the encoder is restricted to be linear, the best relay is

linear [22].

• The problem is non-convex when the encoders are

viewed as stochastic kernels [20]. Hence, person by

person-optimality above does not imply optimality of

linear policies. For further discussion, see [23] and [12].

This implies that the person-by-person optimal encoding

policies do not guarantee team optimality. Even under

linear policies, the problem is not convex (see [24]).

• Linear policies are not globally optimal [23]. If there

are more that two relays, linear policies are not optimal

[25]. Both references mentioned have obtained coun-

terexamples.

2) Witsenhausen’s Counterexample and the Generalized

Gaussian test channel: Consider the following two-stage

stochastic control problem with non-classical information

structure:

x1 = x0 + u1, x2 = x1 − u2

and with the measurement equations

y1 = x0, y2 = x1 + v

and control policies

u1 = γ1(y1), u2 = γ2(y2),

with cost function now written as

Q(γ1, γ2) = E [k2u2
1 + x2

2].

where k is a positive real parameter, while x0 and v are zero

mean independent Gaussian random variables with variance

σ2 and 1, respectively. This is Witsenhausen’s counterex-

ample [4]. For this problem, Witsenhausen established that

a solution exists (we note that Wu and Verdu provided

an alternative proof using tools from Transportation theory

[26]), and established that an optimal policy is non-linear.

Under a different cost selection, the formulation above can

also be used to cast the well known Gaussian test channel,

which admits an optimal affine solution. An interesting study

on the optimality of affine policies for different quadratic

costs is provided in [27], and a concrete example is solved

in [12].

Remark 3.1: As mentioned earlier, [15] showed that it is

possible to transform any dynamic team problem into a static

team problem. The static reduction of the Witsenhausen’s

counterexample is a two controller static team where the

observations y1 and y2 of the two controllers are indepen-

dent zero-mean Gaussian random variables with variance σ2

and 1, respectively. See [15] for the exact correspondence

between the static formulation and the original example.

Remark 3.2: In a class of quadratic cost minimization

problems, one poses the problem not as an expectation min-

imization but as a min-max optimization where nature acts

as the maximizer and the controllers act as the minimizers

for cost functions of the form

inf
{γi}

sup
ω

J(γ, ω),

with J being a quadratic function, γi denoting controller

policies and ω a disturbance with norm constraints. Linear

policies are optimal for a large class of such settings in

both encoder-decoder design as well as controller design (see
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different setups in for example [28], [29], [30], [31], [32]).

The proof of such results typically use the fact that, such min-

max problems can be converted to a quadratic optimization

problem by a re-parametrization of the cost function. More

on this connection will be presented in the next section.

Remark 3.3: There is a large class of problems where

signaling is performance-irrelevant, see [21], [33], [12] for

a class of problems where partial nestedness does not hold,

yet, optimal solutions are linear. Hence, one can look beyond

partial nestedness and exploit the measure dependency of

information structures to look for settings where optimal

policies may be linear and more importantly, the optimization

problem may be convex.

D. Dynamic Programming Approach to Team Problems and

Limited Information Sharing

For centralized stochastic control, dynamic programming

(and its specialization for LQG systems—Ricatti equations)

provide a systematic methodology to synthesize optimal

controllers. Thus, a natural queston is whether the dynamic

programming principle extends to decentralized stochastic

control as well.

In order to attempt to answer the above question, let us

first briefly describe how dynamic programming works in

centralized systems. Consider the model of Section III for

N = 1 control stations and It = (y[1,t], u[1,t−1]). Notice

that this system has classical information structure. The main

conceptual difficulties in the optimal design of such a system

are:

D1) The domain It of the control law γt is increasing with

time; consequently, optimal control laws are harder to

search for and harder to implement as time increases.

D2) The optimal control problem is a functional optimiza-

tion problem where we need to find a control policy

(γt, t ∈ T ) to minimize the expected total loss.

The theory of centralized stochastic control overcomes

these difficulties by identifying an information state πt at

each time with the following properties:

P1) πt is a function of the information It;

P2) πt+1 is a function of πt and new information (ut, yt+1);
P3) πt is a sufficient statistic for predicting the future

observations, i.e., P(yt+1|It) = P(yt+1|πt).
P4) πt is a sufficient statistic for performance evaluation,

i.e., E [c(xt, ut)|It] = E [c(xt, ut)|πt].

For any information state satisfying the above properties,

the centralized stochastic control theory provides the follow-

ing results:

1) Structure of optimal controllers. Restricting attention

to control laws of the form ut = γt(πt) does not entail

any loss of optimality.

2) Dynamic programming decomposition. Recursively

define:1

Vt(πt) = inf
ut∈Ut

E [c(xt, ut)+Vt+1(πt+1) | πt, ut]. (11)

1When T is finite, initialize V|T |+1(·) = 0; otherwise Vt(·) = Vt+1(·)
and (11) reduces to a fixed-point equation.

Then, if the infimum above is achieved, the argmin
at time t gives the optimal control action when the

information state is πt.

The above results hold for any choice of information state.

In general, a system may have more than one information

state, and the “best” choice of information state is model

dependent. Some examples for the choice of information

state are:

1) Markov decision process (MDP). When the controller

observes the state xt of the system perfectly, i.e., when

yt = xt, then πt = xt is an information state.

2) Partially observable Markov decision process

(POMDP). For the general centralized control system

described above, the belief state πt(·) = P(xt = ·|It)
is an information state.

An appropriate information state overcomes the conceptual

difficulties (D1) and (D2) described above. Let Bt denote

the space of all possible values of πt. If Bt is time-invariant,

then difficulty (D1) is resolved. If Bt is finite, we need to

solve
∑

t∈T |Bt| parameteric optimization equations to solve

the dynamic program of (11), thereby resolving difficulty

(D2). Even if Bt is infinite, the dynamic program of (11)

can be solved efficiently either exactly (e.g., LQG systems)

or approximately (e.g., POMDPs).

Now lets come back to the question of extending the

dynamic programming principle to decentralized stochastic

control systems. Decentralized stochastic problems belong

to NEXP complexity class [34]. So, in general, no efficient

solution algorithm is possible. Nonetheless, it is possible to

develop a dynamic programming decomposition for specific

information structures. We present three such generic ap-

proaches.

1) The person-by-person approach: The person-by-

person approach is motivated by techniques for computing

the Nash equilibrium of a game in policy space and works

when some controllers have perfect recall.

The approach proceeds as follows. Pick a controller, say i,

that has perfect recall and arbitrarily fix the control policies

γ−i of all other controllers. Now consider the sub-problem

of optimally choosing the best policy at controller i. Since

the policies of all other controllers are fixed and controller i

has perfect recall, this optimal control sub-problem at con-

troller i is a centralized stochastic control problem. Let πi
t

be any information state for controller i at time t. Then, the

structural results of centralized stochastic control described

above show that a policy of the form ui
t = γi

t(π
i
t) performs

as well as (or, in other words, dominates) any other control

policy at controller i. If the form of πi
t does not depend

on the policies γ−i for other controllers, then the policy

ui
t = γi

t(π
i
t) is optimal for every choice of γ−i; and hence

is globally optimal. Thus, the person-by-person approach is

used to identify the structure of globally optimal policies.

As an example, consider the decentralized sequential hy-

pothesis testing problem described in [35]. Let H ∈ {0, 1} be

a binary hypothesis and two sensors observe noisy versions

of H . At each time, a sensor can either stop and declare an
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estimate Ĥi, or continue to take additional measurements.

Each measurement costs c and when both sensors have

declared an estimate, a cost ℓ(H,H1, H2) is incurred.

Following a person-by-person approach, we get that π1
t =

P(H = 0|yi[1,t]) is an information state for controller i. Since

the form of π1
t does not depend on the control policies of

the other sensor, restricting attention to control policies of

the form ui
t = γi

t(π
i
t) does not entail any loss of optimality.

Furthermore, by following a procedure similar to the Wald

sequential hypothesis testing, we can show that the optimal

control policy γi
t is of the threshold type, i.e., there exists

numbers τ it, τ̄
i
t ∈ [0, 1] with τ it ≤ τ̄ it such that if πi

t ∈ [0, τ it),
then it is optimal to stop and declare 1; if πi

t ∈ (τ̄ it , 1], then

it is optimal to stop and declare 0; otherwise, it is optimal

to take another measurement. (See [35] for details). Thus,

the person-by-person approach identifies the structure of the

optimal controller.

When all controllers have perfect recall and the infor-

mation state at each controller belongs to a time-invariant

space, then the person-by-person approach also gives coupled

dynamic programs. If these coupled dynamic programs have

a fixed point solution, then the resulting policies are person-

by-person optimal.

The main idea for finding such coupled dynamic programs

is the following. Pick a controller, say i, and arbitrarily fix

the controller policy γ−i of all other controllers. Write the

dynamic program to find the optimal policy at controller i.

This dynamic program determines the best response of con-

troller i to the policies γ−i. Write similar dynamic programs

for all controllers. Thus, we end up with N coupled dynamic

programs, one for each controller. These coupled dynamic

programs have a fixed point if for every i, γi is the best

response to γ−i.

We can use an orthogonal search to find the fixed point

of such coupled dynamic programs. Arbitrarily initialize the

control policies γ(0) for all controllers. Pick a controller i,

and use the dynamic program for controller i to find the best

response γ∗,i to γ(0),−i. Set γ(1) such that γ(1),i = γ∗,i and

the rest of the components are same as in γ(0). Repeat the

above process by picking some other controller j. Continue

until a fixed-point is reached. By construction, such a fixed

point determines a person-by-person optimal policy. Such an

approach was used in [35] to find person-by-person optimal

strategies for the decentralized sequential hypothesis testing

problem described above.

In summary, the person-by-person approach identifies

structural properties of globally optimal control policies and

provides a search method to find person-by-person optimal

control policies. This method has been used to identify

globally optimal strategies for specific information struc-

tures (e.g., stochastically nested information structures [21]

and broadcast information structures [36]) and for various

applications (e.g., real-time communication [37]–[42], de-

centralized hypothesis testing and quickest change detec-

tion [35], [43]–[49], and networked control systems [50],

[51]). The person-by-person approach has also been used

to identify person-by-person optimal control strategies for

specific information structures (e.g., control sharing infor-

mation structure [52]). As discussed earlier, a decentralized

control problem need not be convex. Thus, a person-by-

person optimal policy found using the above approach need

not be globally optimal. However, if the problem is convex

(e.g., an LQG system that is partially nested), then the

approach gives a globally optimal solution.

2) The designer’s approach: The designer’s approach was

proposed in [53] (where it was called the standard form) and

refined in [54], [55]. The main idea behind the designer’s

approach is that although the dynamic team problem is

informationally decentralized, it is a centralized planning

problem that may be solved from the viewpoint of a system

designer that (centrally) chooses the control laws of all

the controllers before the system starts running. Since the

control laws are picked before the system starts running,

no data is observed by the system designer. We can obtain

a dynamic programming decomposition of this centralized

planning problem by identifying an appropriate information

state for the designer.

For the system described in Section III, the planning prob-

lem is a POMDP. Thus, based on the results for POMDPs, the

information state is given by P(xt, I
1
t , . . . , I

n
t ). In general, a

dynamic program based on such an information state is not

useful because the space of realizations of Iit is increasing

with time. Nonetheless, the designer’s approach gives useful

results for specific information structures, as is illustrated by

the following example.

Decentralized control with finite memory controllers:

Consider the model of Section III in which no controller

has perfect recall. A simple example of this case is Iit =
{yit, y

i
t−1}. Based on the designer’s approach, the infor-

mation state for this system is P(xt,yt,yt−1), which is

computable from πt = P(xt,yt−1). Based on this infor-

mation state, we get a dynamic program characterized by

the following recursion:

Vt(πt) = inf
γt

E [c(xt,ut) + Vt+1(πt+1) | πt,γt].

The minimizer at time t, if it exists, gives the optimal control

laws γt when the information state is πt. Such an approach

was used for one controller with finite memory in [56] and

for two controllers with finite memory in [54].

Notice that the information state defined above just de-

pends on the past choices of control laws γ[1,t−1]. Hence,

the evolution of the information state is deterministic and

the optimal control policies are obtained using a two step

approach. In the first step, proceed backwards in time and

determine the value function Vt(·) and the corresponding

minimizer. In the second step, start from the initial value

of the information state π1 and proceeds forward in time as

follows. From the result of the first step, find the optimal

control law γ1 corresponding to π1. Based on π1 and γ1,

determining π2 and continue the above process until all

control laws γt, t ∈ T are determined.

The designer’s approach can also be used in tandem

with the person-by-person approach as is illustrated by the
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following example. Such a tandem approach has been used in

various applications including real-time communication [38],

[55], [57], decentralized hypothesis testing [47], and net-

worked control systems [50], [51].

Two agent team with one finite-memory controller:

Consider a two agent (N = 2), where one controller has

perfect recall with I1t = (y1[1,t], u
1
[1,t−1]) and the second

controller has finite memory, say I2t = (y2t , y
2
t−1). (A more

general form of this system was investigated in [54]). Di-

rectly using the designer’s approach on this system will give

an information state P(xt, y
1
[1,t], u

1
[1,t−1], y

2
[t−1,t]) which does

not take values in a time invariant space. We can find a more

useful information state if we first use the person-by-person

approach on controller 1, which shows that P(xt, y
2
[t−1,t] |

I1t ), which is computable from θt = P(xt, y
2
t−1 | I1t ), is an

information state for controller 1. Therefore, based on the

structural results, restricting attention to controller 1 of the

form u1
t = γ1

t (θt) does not entail any loss of optimality.

Now, restrict attention to controller 1 of the form u1
t =

γ1
t (θt) and use the designer’s approach. Based on the de-

signer’s approach, we get that P(xt, θt, y
2
[t−1,t]), which is

computable from πt = P(xt, θt, y
2
t−1), is an information

state. Notice that πt takes value in a time invariant space.

Based on this information state, we get the following dy-

namic program. Define

Vt(πt) = inf
γt

E [c(xt,ut) + Vt+1(πt+1) | πt,γt].

The minimizer at time t, if it exists, gives the optimal control

laws γt when the information state is πt. Although the

above information state looks formidable (it is a probability

measure on a probability measure), the above dynamic

program provides a means of synthesizing approximately

optimal control laws.

3) The common information approach: The common in-

formation approach was proposed in [58]–[60] and works

for decentralized control problems in which the controllers

sequentially share information with each other e.g., the de-

layed information/measurement/control sharing information

structure and the periodic sharing information structures de-

fined earlier. The general class of such information structures

is called partial history sharing information structure [60].

The main idea behind the common information approach

is the following. Given any information structure, we can

split the information available at the controllers into common

information Ct =
⋂

s≥t

⋂n
i=1 I

i
s and local information Li

t =

Iit \ Ct, i = 1, . . . , N . If all controllers have perfect recall,

then we can simply define common information as Ct =
⋂n

i=1 I
i
t . By construction, common information is increasing

with time, i.e., Ct ⊆ Ct+1.

The common information approach consists of the fol-

lowing five steps. The first step is to formulate a centralized

coordinated system from the viewpoint of a coordinator that

observes the common information Ct and chooses prescrip-

tions ϕt = (ϕ1
t , . . . , ϕ

N
t ), where ϕi

t maps the local informa-

tion Li
t to control action ui

t, i = 1, . . . , N . In this coordinated

systems, the controllers simply take the prescription ϕi
t given

to them by the coordinator, and use it to generate control

action ui
t = ϕi

t(L
i
t). The second step is to show that the

coordinated system is a centralized POMDP. The third step

is to identify an information state for the coordinator and use

it to identify the structure of optimal control laws and write

a dynamic programming decomposition. The fourth step is

to show that the coordinated system is equivalent to the

original system, i.e., any policy of the coordinated system

is implementable in the original system, and vice versa, in

such a manner that both policies result in identical realization

of all system variables. The fifth and the final step is to use

the result of the fourth step to translate the structural result

and the dynamic programming decomposition of the third

step to the original system.

For the general system defined above, the information state

is given by P(xt, L
1
t , . . . , L

N
t | Ct). In general, the dynamic

programming decomposition based on this information state

is not useful because the local information Li
t is increasing

with time. Nonetheless, the common information approach

gives useful results for specific information structures, as is

illustrated by the following example.

The delayed sharing information structure: Consider

the model of Section III with a n-step delayed sharing

information structure, i.e., It is given by (4). This model was

proposed in [61], the structural result and dynamic program-

ming decomposition for n = 1 was given in [62], and two

structural results and dynamic programming decomposition

for the general n was given in [63]. We show how this model

can be solved using the common information approach.

In this model, the common information is Ct =
(y[1,t−n],u[1,t−n]), while the local information is Li

t =
(yi[t−n+1,t], u

i
[t−n+1,t]). Based on the common information

approach, we get that πt = P(xt,y[t−n+1,t],u[t−n+1,t]) is

an information state for the coordinator. In addition, we get

the following:

1) Structure of optimal controller. In the coordinated sys-

tem, restricting attention to coordination strategies of

the form ϕt = dt(πt) does not entail any loss of

optimality. Since ui
t = ϕi

t(L
i
t), the structural result

for the coordinator implies that in the original system,

restricting attention to control strategies of the form

ui
t = γi

t(L
i
t, πt) does not entail any loss of optimality.

2) Dynamic programming decomposition. In the coordi-

nated system, define

Vt(πt) = inf
ϕt

E [c(xt,ut) + Vt+1(πt+1) | πt,ϕt].

The minimizer at time t, if it exists, gives the optimal

prescription ϕt when the information state is πt. The

corresponding optimal control policy in the original

system is given by γi
t(·, πt) = ϕi

t(πt)(·).

The above result is similar to the first structural result and

dynamic programming derived in [63].

The common information approach helps in deriving struc-

tural results and dynamic programs that cannot be derived

using the person-by-person approach or the designer’s ap-

proach. A case in point is the results for delayed sharing
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information structure derived above. If the common infor-

mation is Ct = ∅, then the common information approach

collapses to the designer’s approach.

Variations of this approach have been used for various

information structures, including delayed state sharing [64],

partially nested systems with common past [65], teams with

sequential partitions [66], coupled subsystems with control

sharing [67], periodic sharing information structure [68], and

belief sharing information structure [21].

IV. NORM-OPTIMAL DESIGN

In this section, we discuss methods for incorporating most

types of information structure into a modern control frame-

work. We focus here on problems where both the system to

be controlled and the controllers under consideration are all

linear (and, where applicable, time-invariant), except where

otherwse noted. The number of controllers / decision makers,

as well as the amount of times that each one has to act, may

be finite or infinite, and the systems may be discrete-time or

continuous-time. We mainly focus on problems where there

is an infinite horizon and where stability issues thus need to

be considered as well.

In IV-A, we describe the framework; in particular, in-

troducing the idea of an information constraint, and ex-

plaining how optimal decentralized control problems may

be addressed just like standard (centralized) optimal control

problems, attempting to minimize a closed-loop norm, but

subject to a constraint on the controller to be designed. In

the simplest case, when certain controllers / decision makers

can access some measurements but not others, as discussed

in several examples above, this is captured by enforcing a

sparsity constraint on the controller. In IV-B, we review how

to parametrize all of the stabilizing controllers for centralized

problems, in particular, the Youla-Kucera parametrization.

In IV-C we introduce a condition that allows the infor-

mation constraint on the controller to be incorporated in

such a way that finding the optimal controller subject to the

information constraint can be cast as a convex optimization

problem. This holds regardless of which closed-loop norm

one wishes to minimize. The condition, called quadratic

invariance, is an algebraic condition relating the system

(plant) to the constraint, typically providing a simple test for

convexity, and turns out to be closely related to the partially

nested condition described above, developed for classifying

linear optimality in LQG problems. In IV-D, we discuss a

new result allowing these ideas to be applied more broadly,

and allowing the optimization problem to be handled together

with the problem of stabilization. In IV-E, armed with our

test for convexity, we revisit some of the examples that were

used to motivate the constraint framework, and determine

when those problems are amenable to convex synthesis.

In IV-F, we discuss what happens when this approach is

applied to problems which are not quadratically invariant,

and perfectly decentralized problems in particular. In IV-G,

we briefly discuss a related result for nonlinear systems.

A. Framework and Setup

We introduce a framework for designing optimal con-

trollers for LTI systems, subject to decentralized information

constraints.

a) Standard LTI framework: We first review a standard

framework for centralized control synthesis.

P11 P12

P21 G

K

w

uy

z

Fig. 2. Standard LTI feedback control framework

Figure 2 represents a standard design framework often

used in modern control theory. The signal w represents the

vector of exogenous inputs, those the designer has no control

over, such as wind gusts if one is considering an example in

aerospace, and z represents everything the designer would

like to keep small, which would typically include deviations

from a desired state or trajectory, or a measure of control

effort, for example. The signal y represents the vector of

measurements that the controller K has access to, and u is

the vector of inputs from the controller that is fed back into

the plant. The plant is subdivided into four blocks which

map w and u into z and y. The block which maps the

controller input u to the measurements y is simply referred

to as G, since it corresponds to the plant of classical control

analysis, and so that we can later refer to its subdivisions

without any ambiguity. Note that the four parts of the plant

can, and often are, chosen such that all or parts of the vectors

y and u are repeated in the vector z that we are trying to

keep small, and such that parts of the vector u are repeated

in y, to which the controller has access.

The design objective is to construct a controller K to keep

a measure of the size of the mapping from w to z, known as

the closed-loop map, as small as possible. There are many

ways one can measure the size of a mapping, and thus

this basic setup underpins much of modern (linear) controls

including H2-control and H∞-control. The choice of H2

leads to a stochastic interpretation, as that system norm is

equivalent to the 2-norm of the vector z if w was a standard

normal vector, and so the cost is equivalent to that of an

associated LQG problem. In this framework, a decentralized

information structure may be viewed as a constraint on the

structure of the controller K, as now illustrated by examples.

b) Information constraint: We now illustrate why, in

this framework, decentralization may be simply encapsulated

as a constraint that the controller lies in a particular subspace.

We focus now on the controller K, and on G, the part of

the plant which takes the vector of control inputs u to the

measurements y.

The diagram in Figure 3 represents three different sub-

systems, each of which may effect its neighbors, and each
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G1 G2 G3

K1 K2 K3

Fig. 3. Perfectly decentralized control

of which has its own controller, which only has access to

measurements coming from its own subsystem. In this case,

if we look at the system as a whole, we need to design a

controller K that can be written as







u1

u2

u3







=







K1 0 0

0 K2 0

0 0 K3







︸ ︷︷ ︸

K







y1

y2

y3







since each controller input may only depend upon the

measurement from its corresponding subsystem. In other

words, we need to design the best possible K which is block

diagonal. The overall problem can be viewed as minimizing

the size of the closed-loop map subject to the additional

constraint that K ∈ S, where S is the set of all block

diagonal controllers. This concept readily extends to any type

of structural constraint we may need to impose in formulating

an optimal control problem for controller synthesis. For

instance, if in the above example, each controller were able

to share information with its neighbors, then we would end

up with a constraint set S which is tri-diagonal. In general,

if the controller that generates ui is unable to see yj then

the ijth entry of the controller must be set to zero.

Fig. 4. Network with delays

If controllers were instead allowed to communicate with

each other, but with some delays, this too could be reflected

in another constraint set S. This situation is represented

in Figure 4, where the controller that generates ui, which

regulates subsystem i, can see the information from another

subsystem j only after a transmission delay of tij . In this

case, if we look at the system as a whole, we need to design

a controller K that can be written as






u1

u2

u3







=







Dt11K̃11 Dt12K̃12 Dt13K̃13

Dt21K̃21 Dt22K̃22 Dt23K̃23

Dt31K̃31 Dt32K̃32 Dt33K̃33







︸ ︷︷ ︸

K







y1

y2

y3







where each Dtij realizes the corresponding delay tij , and

each K̃ij represents a factor of the controller that we are free

to design. Notice that, according to the representation above,

the controller responsible for ui must wait the prescribed

delay tij until it can access measurements from subsystem j.

The set S above is called the information constraint, as

it captures the information available to various parts of the

controller. This includes the notion of information structures

as defined earlier in Section III, as the constraint can be set to

encapsulate which measurements and/or control inputs (and

from which subsystems and from which times) are available

to the controllers of which subsystems at which times.

The overarching point is that the objective of decentralized

control may be considered to be the minimization of a

closed-loop map subject to an information constraint K ∈ S.

The approach is extremely broad, as it seamlessly incorpo-

rates any type of decentralization, any control objective, and

heterogeneous subsystems.

c) Problem formulation: The mapping from w to z that

we wish to keep small in Figure 2, the closed-loop map,

can be written as f(P,K) = P11 + P12K(I − GK)−1P21.

The problem that we would like to address may then be

formulated as:

minimize ‖f(P,K)‖

subject to K stabilizes P

K ∈ S

(12)

The norm (‖·‖) is any appropriate system norm, chosen

based on the particular performance objectives, which could

be the H2-norm or H∞-norm, as briefly described earlier.

The information constraint S is the subspace of admissible

controllers that encapsulates the decentralized nature of the

system, as exemplified above. Choosing P and S, along with

the H2-norm, to correspond to a given LQG problem with

information structure is discussed in [69]. The stabilization

constraint is needed in the most typical case where the

signals lie in extended spaces and the plant and controller

are rational proper systems whose interconnections may thus

be unstable. It may not be necessary, or another technical

condition may be necessary such as the invertibility of

(I−GK), for other spaces of interest, such as Banach spaces

with bounded linear operators [70], [71].

B. Youla-Kucera Parametrization of Stabilizing Controllers

If the plant to be controlled is stable, we could use the

following change of variables

Q = −K(I −GK)−1 ⇐⇒ K = −Q(I −GQ)−1

(13)
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and then allowing the new parameter Q to be stable is

equivalent to the controller K stabilizing the plant P , and

the set of all achievable closed-loop maps (ignoring the

information constraint) is then given as

{P11 − P12QP21 | Q stable}. (14)

This is generalized by the Youla-Kucera or

YJBK parametrization [72], which uses a doubly

coprime factorization of G over RH∞, that is,

Ml, Nl, Xl, Yl,Mr, Nr, Xr, Yr ∈ RH∞ such that

G = NrM
−1
r = M−1

l Nl and
[

Xl −Yl

−Nl Ml

] [
Mr Yr

Nr Xr

]

=

[
I 0
0 I

]

. (15)

Then the set of all stabilizing controllers is given by

{K ∈ Rp | K stabilizes G}

=
{

(Yr −MrQ)(Xr −NrQ)−1
∣
∣

Xr −NrQ is invertible, Q ∈ RH∞

}

=
{

(Xl −QNl)
−1(Yl −QMl)

∣
∣

Xl −QNl is invertible, Q ∈ RH∞

}

.

(16)

Thus allowing the new (Youla) parameter Q to vary over all

stable systems is still equivalent to considering all stabilizing

controllers K, and the set of all achievable closed-loop maps

is then given by

{T1 − T2QT3 | Q ∈ RH∞} (17)

where T1, T2, T3 are other stable systems which are functions

of the coprime factors and the generalized plant parameters.

We see that these parametrizations allow the set of achiev-

able closed-loop maps to be expressed as an affine function

of a stable parameter, and thus allow our objective function

in our main problem (12) to be cast as a convex function of

that parameter. However, the information constraint K ∈ S

will typically not be simple to express in the new parameter,

and this will ruin the convexity of the optimization problem.

C. Quadratic Invariance

We have seen that we can employ a change of variables

that will make our objective convex, but that will generally

cause the information constraint to no longer be affine. We

thus seek to characterize problems for which the information

constraint may be written as an affine constraint in the Youla

parameter, such that a convex reformulation of our main

problem will result.

The following property, first introduced in [70], provides

that characterization.

Definition 4.1: The set S is quadratically invariant with

respect to G if

KGK ∈ S for all K ∈ S.

In other words, given any admissible controller K, the

composition KGK has to be admissible as well. For prob-

lems where both are well-defined, this is shown to be

equivalent to the partially nested condition [69] discussed

in previous sections. When this condition holds, it follows

that a controller being admissible is further equivalent to the

linear-fractional transformation we encountered earlier lying

in the constraint set [71], [73]:

K ∈ S ⇐⇒ K(I −GK)−1 ∈ S (18)

Quadratic invariance is not only necessary and sufficient for

the above equivalence, but also for the linear-fractional trans-

formation of the admissible set to be any convex set [74].

We can see immediately from (13) that for the stable case

this results in the equivalence of enforcing the information

constraint on the controller or on the new parameter:

K ∈ S ⇐⇒ Q ∈ S (19)

and it can be shown that when the plant is unstable, as long

as it can be stabilized by a stable controller (known as strong

stabilizability), another change of variables can be made such

that this equivalence still holds [73].

Thus when the information constraint S is quadratically

invariant with respect to the plant G, the optimal decentral-

ized control problem (12) may be recast as the following:

minimize ‖T1 − T2QT3‖

subject to Q stable

Q ∈ S

(20)

which is a convex optimization problem.

This leaves the question of how to find that initial stabi-

lizing controller, itself a longstanding difficult problem, as

well as whether the stabilization and optimization need to

be handled separately, or whether they can be handled si-

multaneously. These questions are answered in the following

subsection.

D. A Parametrization of Information-Constrained Con-

trollers

Recent results show [75] that when quadratic invariance

holds, an arbitrary coprime factorization, which is always

available, can be used to characterize the information con-

straint on the controller as the following constraint on the

Youla parameter:

K ∈ S ⇐⇒ MrQMl −MrYl ∈ S (21)

While the constraint on Q is not identical to the information

constraint, as it was in the previous cases we discussed, it is

still an affine constraint.

The problem of finding a stabilizing controller is then

reduced to finding a Q ∈ RH∞ such that this constraint is

satisfied, and moreover, if this cannot be done, then we know

that the plant is not stabilizable with the given information

constraint. It shown in [75] that the existence of such a Q

is equivalent to the feasibility of an exact model matching

problem [76], with stability restrictions [77], for which there

are tractable solution methods [78]. If the associated exact

model-matching problem is feasible then we can use the

resulting Q to recover the stabilizing controller via (16). If
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this controller is stable then we can use the previous results

to write the optimal decentralized control problem as (20).

When it is not, similar results can be obtained by using a

parametrization discussed in [79], with a different convex

problem resulting in a convex parametrization that is distinct

from Youla’s [80].

Instead of this two-step compensation scheme, finding a

stabilizing controller first, then using this to parametrize all

of the stabilizing controllers and to find the optimal one, we

can also utilize this new equivalence (21) to address both

issues at once.

We can now, after finding any doubly coprime factor-

ization, recast the optimal decentralized control problem as

follows:
minimize ‖T1 − T2QT3‖

subject to Q stable

MrQMl −MrYl ∈ S

(22)

This is still a convex optimization problem in the Youla

parameter Q. The solution allows us to recover the optimal

decentralized controller via (16), and the problem is infeasi-

ble if and only if the plant is not stabilizable with the given

information constraint.

E. Examples

This subsection looks at particular classes of information

constraints to see when this quadratic invariance condition

holds, to identify those decentralized problems which are

amenable to convex synthesis. We see that this algebraic con-

dition often has intuitive interpretations for specific classes

of problems.

1) Structural Constraints: We first look at structural con-

straints, or sparsity constraints, where each sub-controller can

see the measurements from some subsystems but not from

others. This structure can be represented with a binary matrix

Kbin. For instance, Kbin
kl = 1 if the kth control input uk is

allowed to be a function of the lth measurement yl, and

Kbin
kl = 0 if it cannot see that measurement. The information

constraint S is then the set of all controllers which have the

structure prescribed by Kbin; that is, all of the controllers

such that none of the sub-controllers use information which

they cannot see.

A binary matrix Gbin can similarly be used to give the

structure of the plant. For instance, Gbin
ij = 1 if Gij is non-

zero and the ith measurement yi is affected by the jth control

input uj , and Gbin
ij = 0 if it is unaffected by that input.

Given this representation of the structure of the plant and

the controller constraints, we have the following result:

S is quadratically invariant with respect to G if and only

if

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0 for all i,j,k,l. (23)

Figure 5 illustrates this condition. The condition in (23)

requires that, for arbitrary i, j, k, l, if the three blocks on the

bottom are all non-zero (or allowed to be chosen non-zero),

then the top block must be allowed to be non-zero as well.

In other words, if there is an indirect connection from a

Fig. 5. Structural quadratic invariance

measurement to a control input, then there has to be a direct

connection as well.

One subclass of problems for which this condition holds

is where the plant is lower triangular, and the controller

constraints are such that if a given part of the controller is

allowed to be nonzero, then all of the parts of the controller

below it must be active as well, sometimes called skyline

structure [70]. This can be viewed as the manifestation in

this framework of the aforementioned classical structures.

Other classes of problems previously shown to admit convex

solutions [81] satisfy the condition developed here as well.

When this condition is met, the problem is quadratically

invariant, and we can recast our optimal decentralized control

problem as the convex optimization problem in (20) or (22).

2) Symmetry: We briefly consider the problem of sym-

metric synthesis. Suppose that we need to design the best

symmetric controller; that is, the best controller such that

Kkl = Klk for all k, l, and that the information constraint S

is the set of all such symmetric controllers. If the plant is

also symmetric; that is, if Gij = Gji for all i, j, then KGK

is symmetric for any symmetric K. Thus, KGK ∈ S for

all K ∈ S, the problem is quadratically invariant, and the

optimal symmetric control problem may be recast as (20)

or (22).

3) Delays: We now return to the problem of Figure 4,

where we have multiple nodes/subsystems, each with its own

controller, and each subsystem i can see the information from

another subsystem j after a transmission delay of tij .

We similarly consider that the inputs to a given subsys-

tem j may affect other subsystems after some delay, and

denote the amount of time after which it may affect another

subsystem i by the propagation delay pij .

The overall problem of controlling such a network with

propagation delays, with controllers that may communicate

with transmission delays, is depicted in Figure 6.

When this problem is tested for quadratic invariance, one

first finds that the following condition is necessary and

sufficient:

tki + pij + tjl ≥ tkl for all i, j, k, l (24)

This is reminiscent of condition (23) for structural con-

straints, as it similarly requires that any direct path from

yl to uk must be at least as fast as any indirect path through

the plant. This condition can be further reduced to a very

simple intuitive condition [82], as long as we may assume

that the transmission delays themselves satisfy the triangle
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Fig. 6. Network with delays

inequality; that is

tki + tij ≥ tkj for all k, i, j. (25)

This is typically a very reasonable assumption, as it states

that information is transmitted between nodes in the quickest

manner available through the network. If the inequality failed

for some k, j, one would want to reroute the transmissions

from j to k along the faster route such that the inequality

would then hold.

If the triangle inequality among transmissions does hold,

then condition (24), and thus quadratic invariance, is reduced

to simply:

pij ≥ tij for all i, j. (26)

In other words, for any pair of nodes, information needs

to be transmitted faster than the dynamics propagate. When

this simple condition holds, the problem is quadratically

invariant, and the optimal decentralized control problem may

be recast as the convex problem (20) or (22).

This very intuitive result has a counterintuitive comple-

ment when one considers computational delays as well. Sup-

pose now that the ith controller cannot use a measurement

from the jth subsystem until a ’pure’ transmission delay

of t̃ij , representing the time it takes to send the information

from one subsystem to the other, as well as a computational

delay of ci, representing the time it takes to process the

information once it is received.

While intuition might suggest that these two quantities

would end up being added and then replacing the right-

hand side of equation (26), if we now assume that the

pure transmission delays satisfy the triangle inequality, the

condition for quadratic invariance becomes:

pij + cj ≥ t̃ij for all i, j (27)

with the computational delay on the other side of the

inequality.

This shows that, regardless of computational delay, if in-

formation can be transmitted faster than dynamics propagate,

then the optimal decentralized control problem can be refor-

mulated as a convex optimization problem. If we consider

a problem with multiple aerial vehicles, for example, where

dynamics between any pair of subsystems will propagate at

the speed of sound, this tells us that transmissions just have to

be faster than that threshold for the optimal control problem

to be recast as (20) or (22).

The results of this section have also been extended to

spatio-temporal systems [83], where plants and controllers

can act across a continuum, and results very similar to the

above still hold. When applied to the special case of spatially

invariant systems, the controller still needs to be able to

receive information faster than the plant can propagate its

inputs over any given distance, analogous to (26), and the

triangle inequality (25) discussed above becomes a condition

that the support function imposed on the controller needs

to be subadditive. This includes funnel causal systems,

developed in the study of convexity for these problems [84].

F. Perfectly Decentralized Control

We now revisit the problem of Figure 3, where each

controller can only use the measurements from its own

subsystem, and thus the information constraint is block

diagonal. This problem is never quadratically invariant, and

will never satisfy condition (23), except for the case where

the subsystems do not affect one another; that is, except for

the case where G is block diagonal as well.

In all other cases where subsystems may have some affect

on others, we thus cannot parametrize all of the admissi-

ble stabilizing controllers in a convex fashion, and cannot

cast the optimal decentralized control problem as a convex

problem such as in (20). However, a Youla parametrization

can similarly be used, and while (19) does not hold, as the

information constraint on the controller is not equivalent to

enforcing it on the Youla parameter, it is instead equivalent

to a quadratic equality constraint on the parameter [85]:

K ∈ S ⇐⇒ W2 +QW4 −W1Q−QW3Q = 0
(28)

for stable operators W1,W2,W3,W4. When returning to

the optimal decentralized control problem, this equality

constraint replaces the final Q ∈ S constraint of (20) or

MrQMl − MrYl ∈ S constraint of (22). The problem is

no longer convex due to the quadratic term, but the overall

difficulty is transformed to one well-understood type of

constraint, for which many methods exist to approximate

optimal solutions. Another approach inspired on Youla’s is

given in [86] for the fully decentralized case, where the lack

of convexity is readily recognizable from certain nonlinear

constraints imposed on the parameters.

Other structural constraints, which are neither block diago-

nal nor quadratically invariant, can be similarly parametrized

by first converting them to a perfectly decentralized prob-

lem [87]. One can also find the closest constraint set which

is quadratically invariant to get approximate solutions, or the

closest quadratically invariant subset or superset to obtain

bounds on the solution [88].

G. Nonlinear Decentralized Controller Parametrization

The parametrization and optimization results discussed

thus far assume that the operators, both the plant to be
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controlled and the possible controllers that we may design

for it, are all linear, and when applicable, time-invariant

as well. A similar convex parametrization of stabilizing

decentralized controllers exists even when the systems are

possibly nonlinear and possibly time-varying (NLTV) [89].

The condition allowing for the parametrization then becomes

K1(I ±GK2) ∈ S for all K1,K2 ∈ S.

When the plant is stable, the (finite gain) stabilizing

controllers may be parametrized similarly to (14) [90], and

when the plant is unstable, the stabilizing controllers may

typically be parametrized similarly to (17) [91]. Similar

to quadratic invariance, the above condition then yields

the equivalence of the controller and the feedback map

satisfying the information constraint (18), which then gives

the equivalence of the controller and the parameter satisfying

the constraint as in (19). The convex parametrization of

all causal stabilizing decentralized controllers then results,

analogous to the linear case with quadratic invariance.

While this condition may appear quite different from

quadratic invariance, they actually both reduce to the same

conditions when one considers the classes of sparsity con-

straints or delay constraints, and so these results extend to

all of the cases covered in Sections IV-E.1 and IV-E.3.
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[12] S. Yüksel and T. Başar, Stochastic Networked Control Systems:

Stabilization and Optimization under Information Constraints. (under
review, Springer-Birkhäuser), Sep. 2012.
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