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Abstract— The optimal decentralized control of coupled sub-
systems with control sharing is investigated. The system consists
of n-coupled subsystems, each with a local control station. The
evolution of a subsystem is controlled by the actions of all
control stations. However, each control station observes only
the state of its subsystem and the one-step delayed actions of all
control stations. At each time, a cost that depends on the state of
all subsystems and the actions of all control stations is incurred.
The system has non-classical information structure; since each
control station observes the delayed control actions of all other
control stations, the system is said to have control-sharing
information structure. We use the approach of Mahajan et al.
(2008), to obtain the structure of optimal control stations and a
dynamic programming decomposition, which is similar to the
dynamic program for centralized partially observed systems.
The structure of optimal control stations is simpler than the
general structure proposed in Mahajan et al. (2008), and,
consequently, so is the dynamic programming decomposition.

I. INTRODUCTION

A. Motivation

In this paper, we investigate one of the simplest ar-

chitectures for networked control systems—a collection of

dynamically coupled subsystems, each with a local control

station. A local control station directly observes the state

of its subsystem, but does not observe the state of other

subsystems. However, the control actions of any control sta-

tion are observed by all control stations with one-step delay.

Such a control sharing happens naturally in applications

like queueing networks and multi-terminal communication,

or when control actions are communicated over a broadcast

medium like the Internet.

The above model provides a modular architecture for

networked control systems. In this paper, we investigate the

optimal design of such a decentralized control system. The

system has a non-classical information structure. In general,

the optimal design of decentralized control systems with

non-classical information structure is notoriously difficult.

Nonetheless, we show that the salient features of the model—

each local control observes the state of its subsystem; the

dynamics of a subsystem does not depend on the state of

other subsystems; and all control actions are shared between

the control stations—simplify the design of such a system.

B. Notation

We denote random variables with upper case letters,

their realization with lower case letters, and their space of

realizations by script letters. For example, for a random
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variable X , x denotes its realization and X denotes its

space of realizations. Subscripts denote time and superscripts

denote the subsystem. For example, X i
t denotes the state of

subsystem i at time t . The short hand notation X i
1Wt denotes

the vector .X i
1; X i

2; : : : ; X i
t /. Bold face letters denotes the

collection of variables at all subsystems. For example, Xt

denotes .X1
t ; X2

t ; : : : Xn
t /. The notation X�i

t denotes the

vector .X1
t ; : : : ; X i�1

t ; X iC1
t ; : : : ; Xn

t /.

�.X / denotes the probability simplex on the space X .

P.A/ denotes the probability of an event A, and EŒX�

denotes the expectation of a random variable X . Let N

denote the set of natural numbers.

C. Model and Problem Formulation

Consider a discrete-time networked control system with

n subsystems. Let Zt 2 Z denote the global state of the

system and X i
t 2 X i , i D 1; : : : ; n, denote the local state

of subsystem i at time t . The initial global state Z1 has

a distribution PZ . Conditioned on the initial global state

Z1, the initial local state of all subsystems are independent;

initial local state X i
1 is distributed according to PX i jZ , i D

1; : : : ; n. Let Xt WD .X1
t ; : : : ; Xn

t / denote the local state of

all subsystems.

A control station is co-located with each subsystem. Let

U i
t 2 U i denote the control action of control station i and

Ut WD .U 1
t ; U 2

t ; : : : ; U n
t / denote the collection of all control

actions.

At time t , control station i , i D 1; : : : ; n, perfectly

observes the global state Zt , the local state X i
t of subsystem

i , and the one-step delayed control actions Ut�1 of all control

stations—thus, the system has a control sharing information

structure.

Control station i , i D 1; : : : ; n, chooses a control action

U i
t 2 U i

t based on all the data available to it. Thus,

U i
t D gi

t .Z1Wt ; X i
1Wt ; U1Wt�1/ (1)

where Z1Wt WD .Z1; : : : ; Zt /, X i
1Wt WD .X i

1; X i
2; : : : ; X i

t / and

U1Wt�1 WD .U1; U2; : : : ; Ut�1/. The function gi
t is called the

control law of control station i .

The global state and the local state of each subsystems are

coupled through the control actions; the global state evolves

according to

ZtC1 D f 0
t .Zt ; Ut ; W 0

t / (2)

while the local state of subsystem i , i D 1; : : : ; n, evolves

according to:

X i
tC1 D f i

t .Zt ; X i
t ; Ut ; W i

t / (3)
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W i
t 2 W i , i D 0; 1; : : : ; n, is the plant disturbance with

distribution PW i . The processes fW i
t ; t D 1; : : : g, i D

0; 1; : : : ; n, are assumed to be independent of each other and

also independent of the initial state .Z1; X1/ of the system.

Note that the updated local state of subsystem i depend

only the previous local state of subsystem i and previous

global state but is controlled by all control stations.

The subsystems are also coupled through cost. At time

t , the system incurs a cost ct .Zt ; Xt ; Ut / that depends on

the global state, the local state of all subsystems, and the

actions of all control stations. The system runs for a time

horizon T . The collection gi WD .gi
1; gi

2; : : : ; gi
T

/ of control

laws at control station i is called the control strategy of

control station i . The collection g WD .g1; g2; : : : ; gn/ of

control strategies of all control stations is called the control

strategy of the system. The performance of a control strategy

g is measured by the expected total cost incurred by that

strategy, which is given by

J.g/ WD E

h

T
X

tD1

ct .Zt ; Xt ; Ut /
i

(4)

where the expectation is with respect to a joint measure

of .Z1WT ; X1WT ; U1WT / induced by the choice of the control

strategy g.

We are interested in the following optimal control prob-

lem:

Problem 1: Given the distributions PZ , PX i jZ and PW i

of the initial global state, initial local state, and plant distur-

bance of subsystem i , i D 1; : : : ; n, a horizon T , and the

cost functions ct , t D 1; : : : ; T , find a control strategy g that

minimizes the expected total cost given by (4).

D. Literature overview

The model described above has a non-classical informa-

tion structure [1], [2] because no control station knows the

information available to all other control stations. There are

a few general methods to obtain a dynamic programming

decomposition of systems with non-classical information

structure: for finite horizon systems, a framework was pre-

sented by Witsenhausen [3]; for two-agent finite and infinite

horizon systems, a framework was presented by Mahajan [4].

We are interested in a solution framework that works for

multiple control stations and extends to infinite horizon

systems.

Given the difficulty of a general framework for dynamic

programming for systems with non-classical information

structures, researchers have focused attention on specific

non-classical information structures. One common theme has

been sharing of information between the control stations.

Examples include:

1) Systems in which the state of the plant is observed

by all control stations after a delay. Such systems are

said to have a delayed state observation information

structure and were investigated in [5], who obtained the

structure of optimal control strategies and a dynamic

programming decomposition for such systems.

2) Systems in which the (possibly noisy) observations and

control actions of a control station are observed by all

control stations with a delay. Such systems are called

delayed (observation) sharing information structure.

For such systems, the structure of optimal control

strategies and a dynamic programming decomposition

were obtained in [6] (for one-step delay) and in [7]

(for general delay).

3) Systems in which the control action of a control station

is observed by all control stations with a delay. Such

systems are said to have a control sharing information

structure. One-step delayed control sharing with con-

tinuous valued control actions was considered in [8],

[9], who exploited the continuous nature of the control

actions by embedding the observations densely in the

controls. This information embedding transforms the

systems to a one-step delayed observation sharing

information structures and incurs an arbitrarily small

loss in performance. However, the resulting control

laws are not continuous.

4) System in which the state of the plant is observed peri-

odically by all control stations. Such systems are said

to have a periodic sharing information structure and

were investigated in [10], who obtained the structure of

optimal control strategies and a dynamic programming

decomposition.

5) Systems in which the belief of each control station

on the state of the plant is shared between all control

stations after a delay. Such systems are said to have a

belief sharing information structure. Systems in which

the sharing delay is one were considered in [11], who

obtained the structure of optimal control strategies and

a dynamic programming decomposition for the system.

6) Systems in which the observations of the control sta-

tions is split between common observations and private

observations in such a way that the size of the private

observations does not increase. Such systems were

investigated in [12], who obtained the structure of the

optimal control stations and a dynamic programming

decomposition for the system.

The model considered in this paper has a one-step delayed

control sharing information structure. We want a solution

approach that will also work when the control actions are

finite valued (as is the case in network controlled systems).

So, the technique proposed by Bismut [8] to embed the

observations in the control actions does not necessarily work.

E. Main result

In the model of Section I-C, the data available at control

station i increases with time. Consequently, the domain of

the control laws of the form (1) increases with time, which

makes it difficult to implement the control laws. In this paper,

we show that without loss of optimality we can restrict

attention to control laws whose domain does not increase

with time.

For simplicity of exposition, in the sequel we will assume

that the alphabets Z , X i , U i , and W i , i D 1; : : : ; n, are
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finite. The results extend to general alphabets under suitable

technical conditions.

Definition 1: Let …i
t , i D 1; : : : ; n, t D 1; : : : ; T , denote

the posterior probability of the local state of subsystem i

given the past history of global state and control actions of

all the control stations, i.e., for any x 2 X i , the component

x of …i
t is given by

…i
t .x/ WD P.X i

t D xjZ1Wt ; U1Wt�1I g/

…i
t is a random variable taking values in �.X i /. � i

t denotes

the realization of …i
t and ………t denotes .…1

t ; …2
t ; : : : ; …n

t /.

Theorem 1 (Structure of control laws): In Problem 1, re-

stricting attention to control stations of the form

U i
t D gi

t .X
i
t ; Zt ; ………t / (5)

is without any loss of optimality.

In centralized stochastic control problems, the dynamic

program consists of a sequence of nested optimality

equations—one for each time step. The optimality equation

at time t finds the best control action for the current

(information) state.

In contrast, the dynamic programming decomposition in

decentralized stochastic control is coarser. The dynamic

program still consists of a sequence of nested optimality

equations. However, as different control stations have differ-

ent information, the optimality equations cannot find the best

control action for all control stations. To over this limitations,

we exploit the structure of optimal control laws derived in

Theorem 1. We split the control law at control station i into

two parts: first a coordinator chooses function sections

Di
t .�/ D gi

t .�; Zt ; ………t /

based on common data .Zt ; ………t / for all control stations i D

1; : : : ; n. Then, each control station uses the prescription Di
t

and its local data X i
t to generate a control action

X i
t D Di

t .X
i
t /:

In the dynamic programming decomposition, the optimality

equation at time t finds the best function sections Dt D

.D1
t ; : : : ; Dn

t /. Such a dynamic programming decomposition

is given below.

Theorem 2 (Dynamic programming decomposition):

For a particular realization zt of Zt and ��� t of ………t , an

optimal choice dt D .d 1
t ; : : : ; d n

t / of function sections

Dt D .D1
t ; : : : ; Dn

t / is given by the solution of the

following nested optimality equations

VT .zT ; ���T / D min
dT

E

h

cT .XT ; UT /
ˇ

ˇ

ˇ
ZT D zT ;

………T D ���T ; DT D dT

i

(6)

and for t D T � 1; T � 2; : : : ; 1,

Vt .zt ; ��� t / D min
dt

E

h

ct .Zt ; Xt ; Ut /

C VtC1.Ft .��� t ; ZtC1; Ut ; dt /
ˇ

ˇ

ˇ
Zt D zt ;

………t D ��� t ; Dt D dt

i

(7)

where Ft is a function that will be defined later in Lemma 7.

The arg min at each step in (6) and (7) gives an optimal

choice for the function section Dt . Denote the arg min at

.zt ; ��� t / by d�
t .zt ; ��� t /. Then, the optimal control law g

�;i
t at

time t is given by

g
�;i
t .xi

t ; zt ; ��� t / D d
�;i
t .zt ; ��� t /.x

i
t /: (8)

The rest of this paper is organized as follows. We prove

Theorems 1 and 2 in Sections II and III. We argue how

to extend the results to infinite horizon in Section IV and

conclude in Section V.

II. PROOF OF STRUCTURAL RESULT

The proof of Theorem 1 proceeds in two stages. First,

we show that the past values of the local state X i
1Wt�1 are

irrelevant at control station i at time t . Thus, shedding

this irrelevant information at each control station does not

entail any loss of optimality. Second, we show that the

common data .Z1Wt ; U1Wt�1/ observed by all control stations

may be replaced by an appropriate sufficient statistic. This

replacement results in the structural result of Theorem 1.

A. Shedding of irrelevant information

The result of this section depends on the following result.

Lemma 3: Consider the model of Section I-C for an arbi-

trary but fixed choice of control strategy g. Then, conditioned

on the history of global state and control actions, the local

states of all subsystems are independent. Specifically, for any

realization zt 2 Z , xi
t 2 X i and ui

t 2 U i of X i
t and U i

t ,

i D 1; : : : ; n, t D 1; : : : ; T , we have

P.X1Wt D x1Wt j Z1Wt D z1Wt ; U1Wt D u1Wt /

D

n
Y

iD1

P.X i
1Wt D xi

1Wt j Z1Wt D z1Wt ; U1Wt D u1Wt / (9)

This is proved in Appendix I.

An immediate consequence of the above result is the

following:

Lemma 4: Consider the model of Section I-C for an

arbitrary but fixed choice of control strategy g. Define Ri
t D

.X i
t ; Z1Wt ; U1Wt�1/. Then,

1) The process fRi
t ; t D 1; : : : ; T g is a controlled Markov

process with control action U i
t , i.e., for any xi

t ; Qxi
t 2

X i , zt ; Qzt 2 Z , ui
t ; Qui

t 2 U i , r i
t D .xi

t ; z1Wt ; u1Wt�1/,

Qr i
t D . Qxi

t ; Qz1Wt ; Qu1Wt�1/, i D 1; : : : ; n, and t D 1; : : : ; T ,

P.Ri
tC1 D Qr i

tC1 j Ri
1Wt D r i

1Wt ; U i
1Wt D ui

1Wt /

D P.Ri
tC1 D Qr i

tC1 j Ri
t D r i

t ; U i
t D ui

t /

2) The instantaneous conditional cost simplifies as fol-

lows:

EŒct .Zt ; Xt ; Ut / j Ri
1Wt D r i

1Wt ; U i
1Wt D ui

1Wt �

D EŒct .Zt ; Xt ; Ut / j Ri
t D r i

t ; U i
t D ui

t �

The proof is omitted due to lack of space.

In light of Lemma 4, pick any control station i , i D

1; : : : ; n, arbitrarily fix the choice of control strategy gi for

all other control stations, and consider the subproblem of

5728



finding an optimal strategy for control station i in Prob-

lem 1. In this subproblem, control station i has access

to Ri
1Wt , chooses U i

t , and incurs an expected instantaneous

cost EŒct .Xt ; Ut / j Ri
1Wt ; U i

1Wt �. Lemma 4 implies that the

optimal choice of control strategy gi is a Markov decision

process. Thus, using Markov decision theory [13], we get

the following (recall that Ri
t D .X i

t ; Z1Wt ; U1Wt�1/):

Proposition 5: In Problem 1, restricting attention to con-

trol stations of the form

U i
t D gi

t .X
i
t ; Z1Wt ; U1Wt�1/ (10)

is without loss of optimality.

B. Sufficient statistic for common data

Now consider Problem 1 with control strategies of the

form (10). Split the data at each control station into two parts:

the common data .z1Wt ; u1Wt�1) that is observed by all control

stations and the local (or private) data xi
t that is observed by

only control station i . Note that the size of the local data does

not increase with time. Mahajan et al. [12] showed that this

particular subclass of non-classical information structures is

tractable. Thus, Proposition 5 transforms Problem 1 to a form

for which a solution technique is known.

The solution proposed in [12] proceeds in the following

steps:

1) Formulate a stochastic control problem from the point

of view of a coordinator that observes the common

data .Z1Wt ; U1Wt�1/. We call this system the coordinated

system.

2) Show that the coordinated system is equivalent to the

original model. That is, any strategy in the coordinated

system is implementable in the original model and vice

versa.

3) Show that by suitable expansion of the state-space,

the coordinator’s problem is a MDP (Markov decision

process). Then, use results from Markov decision the-

ory to find the structure of optimal control strategy

and a dynamic programming decomposition for the

coordinated system.

For completeness, we briefly describe these steps below.

See [12] for complete details.

Step 1: The coordinated system

Consider a coordinated system that consists of a coordina-

tor and the n control stations. The coordinator observes the

common data .Z1Wt ; U1Wt�1/ and chooses function sections

Di
t W X i 7! U i , i D 1; : : : ; n according to

Dt D ht .Z1Wt ; U1Wt�1/ (11)

where Dt WD .D1
t ; : : : ; Dn

t /. The function ht .�/ is called the

coordination law.

All control stations i , i D 1; : : : ; n, are passive. They use

the prescription Di
t of the coordinator and act as follows:

U i
t D Di

t .X
i
t / (12)

The system dynamics and the cost remain unchanged. The

system dynamics are given by (2)–(3) and the instantaneous

cost at time t is ct .Zt ; Xt ; Ut /.

The collection h D .h1; : : : ; hT / is called a coordination

strategy. The performance of a coordination strategy is

measured by the expected total cost incurred by that strategy,

which is given by

OJ .h/ D E

h

T
X

tD1

ct .Zt ; Xt ; Ut /
i

(13)

where the expectation is with respect to a joint measure of

.Z1WT ; X1WT ; U1WT / induced by the choice of the coordination

strategy h.

In the coordinated system, we are interested in the follow-

ing optimal control problem.

Problem 2: Given the distributions PZ , PX i jZ and PW i

of the initial global state, initial local state, and plant distur-

bance of subsystem i , i D 1; : : : ; n, a horizon T , and the

cost functions ct , t D 1; : : : ; T , find a coordination strategy

h that minimizes the total cost given by (13).

Step 2: Equivalence between the two models

Proposition 6: Problem 1 with control stations of the

form (10) is equivalent to Problem 2. Specifically, for any

control strategy g of the form (10) for Problem 1 there is a

coordination strategy h for Problem 2 such that OJ .h/ D J.g/.

Conversely, for any coordination strategy h for Problem 2,

there is a control strategy g for Problem 1 such that J.g/ D
OJ .h/.

Proof: Given a control strategy g of the form (10) for

Problem 1, pick the coordination strategy h according to:

hi
t .z1Wt ; u1Wt�1/.�/ D gi

t .�; z1Wt ; u1Wt�1/ (14)

where hi
t denotes the i -th component of ht . Then, for any

realization of the primitive random variables Z1, X1, W i
1WT ,

i D 0; 1; : : : ; n, the system variables .Z1WT ; X1WT ; U1WT / have

the same realizations in Problem 1 and Problem 2. Hence,
OJ .h/ D J.g/.

Conversely, given a control strategy h of Problem 2, pick

a control strategy g for Problem 1 according to

gi
t .x

i
t ; z1Wt ; u1Wt�1/ D hi

t .z1Wt ; u1Wt�1/.xi
t / (15)

By a similar argument as before, we can show that J.g/ D
OJ .h/.

Step 3: The coordinated system as a MDP

In this section, we show that the optimization problem

at the coordinator is a MDP (Markov decision process).

First, recall the definition of …t given in Definition 1. The

dependence of …t on the control strategy g, or equivalently

the dependence on the coordination strategy h, is only though

the function sections D1Wt�1. Thus, for any x 2 X i , the

component x of …i
t is given by

…i
t .x/ WD P.X i

t D xjZ1Wt ; U1Wt�1I D1Wt�1/:

Let � i
t denote the realization of …i

t and ………t denote

.…1
t ; …2

t ; : : : ; …n
t /.
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Lemma 7: There exists a deterministic function Ft such

that

………tC1 D Ft .………t ; ZtC1; Ut ; Dt / (16)

The proof follows from the law of total probability and Bayes

rule.

Lemma 8: Consider the coordinated system for an arbi-

trary but fixed coordination strategy h. Then

1) The process f.Zt ; ………t /, t D 1; : : : ; T g, is a controlled

Markov process with control action Dt , i.e., for any

zt 2 Z , � i
t 2 �.X /, BtC1 � �.X 1/ � � � � � �.X n/,

and any choice d i
t of Di

t , for i D 1; : : : ; n and t D

1; : : : ; T , we have that

P.ZtC1 D ztC1; ………tC1 2 BtC1 j Z1Wt D z1Wt ;

………1Wt D ���1Wt ; D1Wt D d1Wt /

D P.ZtC1 D ztC1; ………tC1 2 BtC1 j Zt D zt ;

………t D ��� t ; Dt D dt / (17)

2) The instantaneous conditional cost simplifies as fol-

lows:

EŒct .Zt ; Xt ; Ut / j Z1Wt D z1Wt ; ………1Wt D ���1Wt ;

D1Wt D d1Wt �

D EŒct .Zt ; Xt ; Ut / j Zt D zt ; ………t D ��� t ; Dt D dt �

(18)
Proof: Part 1) follows from the update equation (2)

for the global state Zt , the behavior (12) of the control

stations in the coordinated system, and the update (16) of

the information state ………t . Part 2) follows from the definition

of ………t and the behavior (12) of the control stations in the

coordinated system.

Lemma 8 shows that the choice of optimal function sec-

tions Dt is a Markov decision process with state .Zt ; ………t /.

Thus, using Markov decision theory [13], we get the follow-

ing:

Proposition 9: In Problem 2, restricting attention to coor-

dination strategies of the form

Dt D ht .Zt ; ………t / (19)

is without loss of optimality. Due to the equivalence with

Problem 1 (see Proposition 6), we get that in Problem 1,

restricting attention to control strategies of the form

U i
t D gi

t .X
i
t ; Zt ; ………t / (20)

is without loss of optimality.

The second part of Proposition 9 proves Theorem 1.

III. PROOF OF DYNAMIC PROGRAMMING

DECOMPOSITION

Lemma 8 shows that the choice of optimal function sec-

tions Dt is a Markov decision process with state .Zt ; ………t /.

Thus, using Markov decision theory [13], we get the follow-

ing dynamic programming decomposition

Proposition 10: Define Vt W Z � �.X 1/ � � � � � �.X n/ 7!

R as follows: for any z 2 Z and � i 2 �.X i /, define

VT .z; ���/ D min
d

E

h

ct .XT ; UT /
ˇ

ˇ

ˇ
ZT D z;

………T D ���; DT D d
i

(21)

and for t D T � 1; T � 2; : : : ; 1,

Vt .z; ���/ D min
d

E

h

ct .Zt ; Xt ; Ut /

C VtC1.Ft .���; ZtC1; Ut ; d/
ˇ

ˇ

ˇ
Zt D z; ………t D ���; Dt D d

i

(22)

where Ft is defined as in Lemma 7. The arg min at each

stage in (21) and (22) gives the optimal coordination strategy

ht .���/.

Theorem 2 follows from the equivalence of Proposition 6

and Proposition 10.

IV. EXTENSION TO INFINITE HORIZON

The results of Theorems 1 and 2 can be easily extended

to infinite horizon expected discounted cost setup: Assuming

that the plant function ft and the instantaneous cost ct

are time-invariant, choose a strategy g WD .g1; g2; : : : ; / to

minimize
1
X

tD1

ˇt�1c.Xt ; Ut /

where ˇ 2 .0; 1/.

The results of Theorems 1 and 2 rely on Proposi-

tion 6—the equivalence between the original and coordinated

systems—which remains valid even for infinite horizon.

The process f.Zt ; ………t /; t D 1; 2; : : : g remains a controlled

Markov process. So, the results of Propositions 9 and 10

extend to infinite horizon setup in the standard manner. These

extensions can then be translated back to the original system

along the lines of the translations presented in this paper for

finite horizon system. This process will yield the following

dynamic programming decomposition for infinite horizon:

The choice of the function section dt as a function of ��� t

does not depend on time as is given by the solution to the

following fixed point equation: for any ��� 2 �.X 1�� � ��X n/

V .���/ D min
d

E

h

c.X; U/

C ˇV.F.���; d; U//
ˇ

ˇ

ˇ
……… D ���; D D d

i

where F.�/ is the time-homogeneous version of Ft .�/.

V. CONCLUSION

We investigate the optimal decentralized control of cou-

pled subsystems with control sharing. The evolution of each

subsystem is controlled by the action of all control stations;

each control station observes the state of its subsystem

and the one-step delayed state of all control stations. The

subsystems are further coupled by the cost.

First, we show that each control station can discard the

past values of the state of its subsystem. Next, we consider a
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coordinated system in which a coordinator observes the one-

step delayed actions of all control stations and prescribes a

partially evaluated section of the control law to each control

station. The control stations use this prescription to compute

the corresponding control action. The coordinated system is

a centralized system. We show that the original and the coor-

dinated systems are equivalent. We analyze the coordinated

system using standard tools from Markov decision theory and

translate the results back to the original system by exploiting

the equivalence between the two systems.

APPENDIX I

PROOF OF LEMMA 3

For simplicity of notation, we use P.z1Wt ; x1Wt ; u1Wt / to

denote P.Z1Wt D z1Wt ; X1Wt D x1Wt ; U1Wt D u1Wt / and a similar

notation for conditional probability. Define

˛i
t WD P.ui

t j z1Wt ; xi
1Wt ; u1Wt�1/;

ˇi
t WD P.xi

t j zt�1; xi
t�1; ut�1/;


 i
t WD P.zt j zt�1; ut�1/

and

Ai
t WD

t
Y

sD1

˛i
s; B i

t WD

t
Y

sD1

ˇi
s; �t WD

t
Y

sD1


s :

From law of total probability it follows that:

P.z1Wt ; x1Wt ; u1Wt / D

� n
Y

iD1

Ai
t B

i
t

�

�t :

Summing over all realizations of x1Wt and observing that

Ai
t and B i

t depends only on .z1Wt ; xi
1Wt ; u1Wt /, we get

P.z1Wt ; u1Wt / D
X

x1
1Wt

X

x2
1Wt

� � �
X

xn
1Wt

� n
Y

iD1

Ai
t B

i
t

�

�t

D

 

n
Y

iD1

�

X

xi
1Wt

Ai
t B

i
t

�

!

�t :

Thus, using Bayes rule we get

P.x1Wt j z1Wt ; u1Wt / D

n
Y

iD1

Ai
t B

i
t

�

P

xi
1Wt

Ai
t B

i
t

� (23)

Summing both sides over xi
1Wt , i ¤ j , we get

P.x
j
1Wt j z1Wt ; u1Wt / D

A
j
t B

j
t

�

P

x
j
1Wt

A
j
t B

j
t

� (24)

The result follows from combining (23) and (24).
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