
Chapter 4

The Common-Information Approach
to Decentralized Stochastic Control

Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis

4.1 Introduction

Many modern technological systems, such as cyber-physical systems, communi-

cation, transportation and social networks, smart grids, sensing and surveillance

systems are informationally decentralized. A key feature of informationally decen-

tralized systems is that decisions are made by multiple decision makers that have

access to different information. This feature violates the fundamental assumption

upon which centralized stochastic control theory is based, namely, that all deci-

sions are made by a centralized decision maker who has access to all the informa-

tion and perfectly recalls all past observations and decisions/actions. Consequently,

techniques from centralized stochastic control cannot be directly applied to decen-

tralized stochastic control problem primarily for the following reason. In centralized

stochastic control, the controller’s belief on the current state of the system is a suf-

ficient statistic for decision making. A similar sufficient statistic does not work for

decentralized stochastic control because controllers have different information and

hence their beliefs on the state of the system are not consistent.

Nevertheless, two general approaches that use ideas from centralized stochastic

control theory have been used for the solution of decentralized control problems:
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(i) the person-by-person approach; and (ii) the designer’s approach. A detailed dis-

cussion of the features and merits of these approaches, as well as their application

to various classes of problems appears in [20]. Here we briefly present the key char-

acteristics of each approach.

The person-by-person approach investigates the decentralized control problem

from the viewpoint of one decision-maker, say the ith decision-maker and proceeds

as follows: (i) arbitrarily fixes the strategy of all other decision-makers; and (ii) uses

centralized stochastic control to derive structural properties for the optimal best-

response strategy of the ith decision-maker. The person-by-person approach can, in

several problem instances [9, 13, 16–18, 26–30, 33–37, 41, 42], identify qualitative

properties of globally optimal control strategies; furthermore, it provides an iterative

method to obtain person-by-person optimal strategies [7] which, in general, are not

globally optimal.

The designer’s approach looks at the decentralized control problem from the

point of view of a system designer who knows the system model and the statistics of

the primitive random variables, and chooses control/decision strategies for all deci-

sion makers. This approach leads to a centralized planning problem whose solution

results in globally optimal control strategies. Such strategies are determined by a dy-

namic program where each step is a functional optimization problem (in contrast to

the usual centralized dynamic program where each step is a parameter optimization

problem). Thus, the determination of globally optimal strategies via the designer’s

approach is a computationally formidable problem [40].

In several instances of decentralized control problems [13, 36, 37], the person-

by-person approach is used first to identify qualitative properties of globally optimal

strategies; then, the designer’s approach is employed to determine globally optimal

strategies with the identified qualitative property.

In addition to the above mentioned approaches, other methods that exploit sys-

tem’s information structure have been developed for the solution of decentralized

control problems. Specifically, solution approaches for systems with partially nested

information structure have appeared in [4, 8, 10, 11, 23]; a generalization of partial

nestedness called stochastic nestedness was defined and studied in [44]. In [8], it

was shown that for linear quadratic Gaussian (LQG) control problems with partially

nested information structure, there is an affine control strategy that is globally op-

timal. In general, the problem of determining optimal control strategies within the

class of affine control policies may not be a convex optimization problem; condi-

tions under which it is convex were identified in [2, 24].

Decentralized stochastic control problems with specific models of information

sharing among controllers, such as delayed information sharing [1, 19, 31, 43], pe-

riodic information sharing [22], broadcast information structure [42], control shar-

ing [3, 12], and systems with common and private observations [14] have also been

investigated in the literature.

In [20], a new general model of decentralized stochastic control, called partial

history sharing information structure, was presented. In this model, it is assumed

that: (i) controllers sequentially share part of their past data (observations and con-

trol actions) with one another by means of a shared memory; and (ii) all controllers



4 The Common-Information Approach to Decentralized Stochastic Control 125

have perfect recall of the commonly available data (also called the common infor-

mation). This model subsumes a large class of decentralized control models where

information is shared among the controllers. A solution methodology for this model

was presented in [20]. This solution methodology is based on the common infor-

mation approach developed in [15] which is applicable to all sequential decision

making problems. The common information approach provides a unified frame-

work for several decentralized control problems that had previously been addressed

using problem specific solution techniques. The key idea behind this approach is

the reformulation of the original decentralized control problem into an equivalent

centralized problem from the perspective of a coordinator. The coordinator knows

the common information and selects prescriptions that map each controller’s local

information to its control actions. The optimal control problem at the coordinator

is a partially observable Markov decision process (POMDP) that can solved using

techniques from Markov decision theory. This approach provides: (i) structural re-

sults (qualitative properties) for optimal strategies; and (ii) a dynamic program for

obtaining globally optimal strategies for all controllers in the original decentral-

ized problem. Notably, the structural results of optimal control strategies obtained

by the common information approach cannot be obtained by the person-by-person

approach (see [20, Sect. III-A]; and the dynamic program obtained by the com-

mon information approach is simpler than that obtained by the designer’s approach

(see [20, Sect. III-A].

In this chapter, we present the common information approach to decentralized

stochastic control. Our objective is to demonstrate that this approach is conceptu-

ally powerful as it overcomes some of the fundamental difficulties in decentralized

decision making, it has broad applicability, it can resolve a long-standing open prob-

lem in decentralized stochastic control, and it can simplify the search for globally

optimal strategies.

This chapter is organized as follows. In Sect. 4.2, we first present two examples,

one for a one stage decentralized control problem (static team) and the other for

a two stage decentralized control problem (dynamic team), that illustrate how the

common information approach simplifies the search of globally optimal strategies;

then we describe the key steps of the approach. In Sect. 4.3, we present a brief recap

of partially observed Markov decision processes (POMDPs) which play a key role

in the common information approach. In Sect. 4.4, we illustrate how the common

information approach can be used to solve problems that arise in control, commu-

nication, and queueing systems. In Sect. 4.5, we demonstrate how our approach can

resolve a long-standing open problem [39] in decentralized stochastic control. We

conclude in Sect. 4.6 by discussing how the common information circumvents the

conceptual difficulties associated with decentralized stochastic control.

4.1.1 Terminology

Decentralized stochastic control problems are also referred to as team problems and

further classified as static and dynamic teams. In dynamic teams, the information
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observed by a decision maker depends on the control actions of other decision mak-

ers, while in static teams it does not; see [7, 8] for details. Decentralized stochastic

control problems are typically dynamic team problems.

4.1.2 Notation

Random variables are denoted by upper case letters; their realization by the corre-

sponding lower case letter. For integers a ≤ b and c ≤ d , Xa:b is a short hand for

the vector (Xa,Xa+1, . . . ,Xb). When a > b, Xa:b equals the empty set. In general,

subscripts are used as time index while superscripts are used to index controllers.

P(·) is the probability of an event, E[·] is the expectation of a random variable. For

a collection of functions g, we use Pg(·) and Eg[·] to denote that the probability

measure/expectation depends on the choice of functions in g.

4.2 The Common Information Approach to Decentralized

Stochastic Control

The main idea of the common information approach to decentralized stochastic con-

trol is to formulate and analyze an alternative but equivalent centralized stochastic

control problem. To illustrate this idea, we start with two of the simplest examples

of decentralized stochastic control: (i) a two controller static team problem; and

(ii) a two controller two-stage dynamic team problem. For both these examples,

we show how the common information approach works and simplifies the search of

globally optimal strategies. After presenting these examples, we present a high-level

description of the main steps of the common information approach.

4.2.1 Illustrative Example 1: A Two Controller Static Team

The following example, which is adapted from [20], illustrates how the common

information approach decomposes a static team problem into several smaller sub-

problems that are easier to solve.

Consider a two controller static team. Nature selects a random variable W . Con-

troller i, i = 1,2, observes a common observation C and a local observation M i .

The observations (C,M1,M2) are a function of W .

The controllers select their control actions U1 and U2 using control laws g1 and

g2 of the form

U1 = g1
(

C,M1
)

, U2 = g2
(

C,M2
)

.

The system incurs a loss ℓ(W,U1,U2).
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Suppose all system variables are finite valued and W , C, M i , U i take values

in finite sets W , C, Mi , and U i , i = 1,2, respectively. The objective is to choose

control laws

g1 : C ×M1 �→ U1, g2 : C ×M2 �→ U2

to minimize

J
(

g1, g2
)

=E(g1,g2)
[

ℓ
(

W,U1,U2
)]

.

Since all system variables are finite valued, one solution approach is to find

the globally optimal control laws (g1, g2) by a brute force search over all possi-

ble
∏2

i=1|U
i ||C||Mi | control laws. For example, if all system variables are binary

valued, we need to search over 24 × 24 = 256 possibilities.

The common information approach reduces the number of possibilities that need

to be searched. The main idea of this approach is that instead of specifying the

control laws (g1, g2) directly, we specify them indirectly as follows. Consider an

alternative coordinated system in which a coordinator observes the common infor-

mation C and chooses prescriptions (Γ 1,Γ 2), where Γ i is a mapping from local

information M i to control action U i , according to a coordination law ψ that is of

the form
(

Γ 1,Γ 2
)

= ψ(C).

The coordinator communicates these prescriptions (Γ 1,Γ 2) to the controllers who

use them to generate control actions as follows:

U1 = Γ 1
(

M1
)

, U2 = Γ 2
(

M2
)

.

The objective of the coordinated system is to find a coordination law ψ to mini-

mize

J̃ (ψ) =Eψ
[

ℓ
(

W,U1,U2
)]

.

It is easy to verify that there is an one-to-one correspondence between the control

laws (g1, g2) of the original system and the coordination law ψ of the coordinated

system. The optimization problem at the coordinator is a centralized stochastic opti-

mization problem in which the coordinator is the only decision-maker. To solve this

centralized stochastic optimization problem, consider any coordination law ψ and

for any c ∈ C, let (γ 1
c , γ 2

c ) = ψ(c). Write the expected loss J̃ (ψ) as

∑

c∈C

P(C = c)E
[

ℓ
(

W,γ 1
c

(

M1
)

, γ 2
c

(

M2
))

∣

∣ C = c
]

.

Minimizing J̃ (ψ) is equivalent to separately minimizing, for each value of c ∈ C,

the expected conditional loss E[ℓ(W,γ 1
c (M1), γ 2

c (M2)) | C = c] over the choice of

(γ 1
c , γ 2

c ). One solution approach to solve each of these latter minimizations is by a

brute force search over all possible
∏2

i=1|U
i ||M

i | possibilities. Thus, this approach

requires searching over |C|
∏2

i=1|U
i ||M

i | possibilities. For example, if all system
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variables are binary valued, we need to search over 2 × 22 × 22 = 32 possibilities.

Contrast this by the 256 possibilities that need to be evaluated for a brute force

search in the original setup. In general, for this example, the common information

approach provides an exponential simplification by reducing the search complexity

from
(

2
∏

i=1

∣

∣U i
∣

∣

|Mi |

)|C|

to |C|

2
∏

i=1

∣

∣U i
∣

∣

|Mi |
.

4.2.2 Illustrative Example 2: A Two-Stage Two-Controller

Dynamic Team

The following example illustrates how the common information approach provides

a dynamic programming decomposition in a multi-stage dynamic team problem.

Consider a two-stage two-controller dynamic team that evolves as follows.

• At t = 1, nature selects a random variable W1. Controller i, i = 1,2, ob-

serves a common observation C1 and a local observation M i
1. The observations

(C1,M
1
1 ,M2

1 ) are a function of W1.

The controllers select their control actions U1
1 and U2

1 using control laws g1
1

and g2
1 of the form

U1
1 = g1

1

(

C1,M
1
1

)

, U2
1 = g2

1

(

C1,M
2
1

)

.

• At t = 2, nature selects a random variable W2 that may be correlated with W1.

As in stage 1, controller i, i = 1,2, observes a common observation C2 and

a local observation M i
2. The difference from stage 1 is that the observations

(C2,M
1
2 ,M2

2 ) are a function of (W2,U
1
1 ,U2

1 ).

The controllers select their control actions U1
2 and U2

2 using control laws g1
2

and g2
2 of the form

U1
2 = g1

2

(

C1,C2,M
1
1 ,M1

2

)

, U2
2 = g2

2

(

C1,C2,M
2
1 ,M2

2

)

.

• At the end of the two stages, the system incurs a loss ℓ(W1,W2,U
1
1 ,U2

1 ,U1
2 ,U2

2 ).

Suppose all system variables are finite valued and Wt , Ct , M i
t , U i

t take values in

finite sets Wt , Ct , M
i
t , and U i

t , i = 1,2, t = 1,2. The objective is to choose control

laws

gi
1 : C1 ×Mi

1 �→ U i
1, gi

2 : C1 × C2 ×Mi
1 ×Mi

2 �→ U i
1, i = 1,2

to minimize

J
(

g1
1, g1

2, g2
1, g2

2

)

=E(g1
1 ,g1

2 ,g2
1 ,g2

2)
[

ℓ
(

W1,W2,U
1
1 ,U2

1 ,U2
1 ,U2

2

)]

.
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Since all system variables are finite valued, one solution approach is to find glob-

ally optimal control strategies (g1
1, g1

2, g2
1, g2

2) by a brute force search over all pos-

sible

2
∏

i=1

∣

∣U i
1

∣

∣

|C1||M
i
1|
∣

∣U i
2

∣

∣

|C1||C2||M
i
1||M

i
2|

control strategies. For example, if all system variables are binary valued, we need to

search over (24 × 216)2 = 240 possibilities.

The common information approach enables us to decompose the above multi-

stage optimization problem using a dynamic program. As in the static case, the

main idea of the common information approach is that instead of specifying the

control strategies (g1
1, g1

2, g2
1, g2

2) directly, we specify them indirectly as follows.

Consider an alternative two-stage coordinated system in which a coordinator with

perfect recall observes the common information Ct at time t and chooses prescrip-

tions (Γ 1
t ,Γ 2

t ) where Γ i
1 is a mapping from local information M i

1 to control action

U i
1 while Γ i

2 is a mapping from local information (M i
1,M

i
2) to control action U i

2.

These prescriptions are chosen according to a coordination strategy (ψ1,ψ2) that is

of the form
(

Γ 1
1 ,Γ 2

1

)

= ψ1(C1),
(

Γ 1
2 ,Γ 2

2

)

= ψ2(C1,C2).

At time t , the coordinator communicates prescriptions (Γ 1
t ,Γ 2

t ) to the controllers

who use them to generate control actions as follows:

U i
1 = Γ i

1

(

M i
1

)

, U i
2 = Γ i

2

(

M i
1,M

i
2

)

, i = 1,2.

The objective of the coordinated system is to find coordination strategy (ψ1,ψ2)

to minimize

J̃ (ψ1,ψ2) =E(ψ1,ψ2)
[

ℓ
(

W1,W2,U
1
1 ,U2

1 ,U2
1 ,U2

2

)]

.

It is easy to verify that there is a one-to-one correspondence between the con-

trol strategies (g1
1, g1

2, g2
1, g2

2) of the original system and the coordination strategy

(ψ1,ψ2) of the coordinated system. The multi-stage optimization problem at the co-

ordinator is a centralized stochastic control problem in which the coordinator is the

only decision maker and has perfect recall. To solve this centralized stochastic con-

trol problem, proceed as follows. Consider any coordination strategy (ψ1,ψ2) and

any realization (c1, c2) ∈ C1 ×C2 of the common information. Suppose the prescrip-

tions (γ 1
1 , γ 2

1 ) = ψ1(c1) are fixed. Given this information, what is the best choice

of the prescriptions (γ 1
2 , γ 2

2 ) = ψ2(c1, c2) at time t = 2? For any choice (γ̃ 1
2 , γ̃ 2

2 ) of

the prescriptions at time t = 2, the expected conditional loss is given by

E
[

ℓ
(

W1,W2,U
1
1 ,U2

1 ,U2
1 ,U2

2

) ∣

∣ c1, c2, γ
1
1 , γ 2

1 , γ̃ 1
2 , γ̃ 2

2

]

.

Since all the prescriptions are specified, the control actions (U1
1 ,U2

1 ,U2
1 ,U2

2 ) are

well-defined random variables, and the above conditional expectation is well-

defined. To obtain the best choice of the prescriptions at time t = 2, minimize the
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above conditional expectation over all possible choices of (γ̃ 1
2 , γ̃ 2

2 ) and define the

minimum value as

V
(

c1, c2, γ
1
1 , γ 2

1

)

= min
γ̃ 1

2 ,γ̃ 2
2

E
[

ℓ
(

W1,W2,U
1
1 ,U2

1 ,U2
1 ,U2

2

) ∣

∣ c1, c2, γ
1
1 , γ 2

1 , γ̃ 1
2 , γ̃ 2

2

]

.

(4.1)

One solution approach to solve the above minimization is by a brute force search

over all possible
∏2

i=1|U
i
2|

|Mi
1||M

i
2| prescription pairs. To find the optimal coordi-

nation law ψ2, we need to solve the above minimization problem for all possible

realizations of the common information (c1, c2) and choices of past prescription

(γ 1
1 , γ 2

1 ). Thus, we need to solve |C1||C2|
∏2

i=1|U
i
1|

|Mi
1| minimization problems,

each requiring the evaluation of
∏2

i=1|U
i
2|

|Mi
1||M

i
2| conditional expectations.

Now that we know how the coordinator selects optimal prescriptions at time

t = 2, what is the best choice of prescriptions (γ 1
1 , γ 2

1 ) at time t = 1? For any real-

ization c1 ∈ C1 and any choice of coordination law ψ̃2, the expected conditional loss

at the coordinator when the prescriptions at time t = 1 are (γ̃ 1
1 , γ̃ 2

1 ) is given as

E
[

ℓ
(

W1,W2,U
1
1 ,U2

1 ,U2
1 ,U2

2

)
∣

∣ c1, γ̃
1
1 , γ̃ 2

1

]

=E
[

E
[

ℓ
(

W1,W2,U
1
1 ,U2

1 ,U2
1 ,U2

2

) ∣

∣ c1,C2, γ̃
1
1 , γ̃ 2

1 , ψ̃2

] ∣

∣ c1, γ̃
1
1 , γ̃ 2

1

]

. (4.2)

Use the optimal prescription at time t = 2, which is given by (4.1), to lower

bound the conditional expected cost in (4.2) as follows:

E
[

E
[

ℓ
(

W1,W2,U
1
1 ,U2

1 ,U2
1 ,U2

2

) ∣

∣ c1,C2, γ̃
1
1 , γ̃ 2

1 , ψ̃2

] ∣

∣ c1, γ̃
1
1 , γ̃ 2

1

]

≥E
[

V
(

c1,C2, γ̃
1
1 , γ̃ 2

1

)
∣

∣ c1, γ̃
1
1 , γ̃ 2

1

]

(4.3)

with equality if the coordinator uses the optimal prescriptions at time t = 2, which

are given by (4.1).

One solution approach to select the best prescriptions at time t = 1 is to evaluate

the conditional expectation in (4.3) for all
∏2

i=1|U
i
1|

|Mi
1| choices of (γ̃ 1

1 , γ̃ 2
1 ). To

find the optimal coordination law ψ1, we need to solve the above minimization

problem for all possible realizations of c1. Thus, we need to solve |C1| minimization

problems, each requiring the evaluation of
∏2

i=1|U
i
1|

|Mi
1| conditional expectations.

The above dynamic program based on the common information approach re-

quires

|C1|

2
∏

i=1

∣

∣U i
1

∣

∣

|Mi
1| + |C1||C2|

2
∏

i=1

∣

∣U i
2

∣

∣

|Mi
1||M

i
2|
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evaluations.1 For example, when all variables are binary valued, we need to evaluate

214 conditional expectations. Contrast this with 240 possibilities that need to be eval-

uated for a brute force search in the original setup. In general, for this example, the

common information approach provides an exponential simplification by reducing

the search complexity from

(

2
∏

i=1

∣

∣U i
1

∣

∣

|Mi
1|
(
∣

∣U i
2

∣

∣

|Mi
1||M

i
2|
)|C2|

)|C1|

to

|C1|

(

2
∏

i=1

∣

∣U i
1

∣

∣

|Mi
1| + |C2|

2
∏

i=1

∣

∣U i
2

∣

∣

|Mi
1||M

i
2|

)

.

In general, it is possible to improve the computational advantage of the common

information approach by:

1. Identifying irrelevant information at the controllers: One way of reducing the

complexity of coordinator’s problem is to show that part of local information is

irrelevant for controllers. If this can be established (often by using the person-by-

person approach described in Sect. 4.1), then the coordinator’s prescription are

mappings from the reduced local information to control actions. This reduces the

number of possible prescription choices to be considered by the coordinator.

2. Identifying an information state for the coordinator: An information state serves

as a sufficient statistic for the data available to the coordinator. Instead of finding

best prescriptions for all possible realizations of coordinator’s data, we only need

to find best prescriptions for each realization of coordinator’s information state. If

the coordinator’s decision problem can be shown to be equivalent to some known

models of centralized stochastic control (such as Markov decision problems or

partially observed Markov decision problem), then we can use stochastic control

techniques to find an information state for the coordinator.

4.2.3 The Common Information Approach

The previous two examples illustrate how the common information approach works

for simple static and dynamic teams. We generalize this approach to a broad class

of decentralized stochastic control systems by proceeding as follows:

1We assume that evaluating expected loss or expected conditional loss requires the same computa-

tional effort irrespective of the cost function and the probability measure. This analysis is meant to

provide a general idea of reduction in complexity, and is not a strict evaluation of the computational

benefits of the common information approach.
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1. Construct a coordinated system: The first step of the approach is to identify the

common information at the controllers. The common information at time t must

be known to all controllers at t . Define the local information at a controller to

be the information left after subtracting the common information from all the

data available at that controller. If the common information is non-empty, con-

struct a coordinated system in which at each time a coordinator has access to

the common information at that time and selects a set of prescriptions that map

each controllers’ local information to its control action. The loss function of the

coordinated system is the same as the loss function of the original system. The

objective of the coordinator is to choose a coordination strategy (i.e., a sequence

of coordination laws) to minimize the expected total loss.

2. Formulate the coordinated system as a POMDP: If the system model is such that

the data available at the coordinator—the common information—is increasing

with time, then the decision problem at the coordinator is centralized stochastic

control problem. The second step of the approach is to formulate this centralized

stochastic control problem as a partially observable Markov decision process

(POMDP). To do so, we need to identify the (unobserved) state for input–output

mapping for the coordinated system. In general, the vector consisting of the state

of the original system and the local information of all controllers (or an appropri-

ate subset of this vector) is a state for input–output mapping for the coordinated

system.

3. Solve the resultant POMDP: The third step of the approach is to use Markov

decision theory to identify the structure of optimal coordination strategies in the

coordinated system and to identify a dynamic program to obtain an optimal co-

ordination strategy with such structure.

4. Show equivalence between the original system and the coordinated system: The

fourth step of the approach is to show that the two models are equivalent. In

particular, for any coordination strategy in the coordinated system, there exists

a control strategy in the original system that yields the same expected loss, and

vice-versa.

5. Translate the solution of the coordinated system to the original system: The fifth

step of the approach is to use the equivalence of the fourth step to translate the

structural results and the dynamic program obtained in the third step for the coor-

dinated system to structural results and dynamic program for the original system.

In Sects. 4.4 and 4.5, we illustrate how the above methodology applies to prob-

lems is communication, control, and queueing systems. Before we present these

applications, we briefly review the POMDP model and results.

4.3 A Brief Recap of Partially Observable Markov Decision

Processes (POMDPs)

A partially observable Markov decision process (POMDP) is a model of centralized

(single decision-maker) stochastic control. It consists of a state process {St }
T
t=1,
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an observation process {Ot }
T
t=1, and an action process {At }

T
t=1. For simplicity, as-

sume that all system variables are finite valued and St , Ot , At takes value in time-

homogeneous finite sets S , O, and A. A POMDP has the following features:

1. The decision maker perfectly recalls its past observations and actions and

chooses the action as a function of its observation and action history, that is,

At = dt (O1:t ,A1:t−1),

where dt is the decision rule at time t .

2. The state, observation, and action processes satisfy the following controlled

Markov property

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t ) =P(St+1,Ot+1 | St ,At ).

3. At each time, the system incurs an instantaneous cost ℓ(St ,At ).

4. The objective of the decision-maker is to choose a decision strategy d :=

(d1, . . . , dT ) to minimize a total cost which is given by

J (d) =E

[

T
∑

t=1

ℓ(St ,At )

]

.

The following standard result from Markov decision theory identifies the struc-

ture of globally optimal decision strategies and a dynamic program to find optimal

strategies with that structure; see [38] for details.

Theorem 4.1 (POMDP Result) Let Θt be the conditional probability distribution

of the state St at time t given the observations O1:t and actions A1:t−1,

Θt (s) :=P(St = s | O1:t ,A1:t−1), s ∈ S.

Then,

(a) Θt+1 = ηt (Θt ,At ,Ot+1), where ηt is the standard nonlinear filter described as

follows: If θt , at , ot+1 are the realizations of Θt ,At and Ot+1, then the realiza-

tion of sth element of the vector Θt+1 is

θt+1(s) =

∑

s′ θt (s
′)P(St+1 = s,Ot+1 = ot+1 | St = s′,At = at )

∑

s′′,s̃ θt (s′′)P(St+1 = s̃,Ot+1 = ot+1|St = s′′,At = at )

=: ηs
t (θt , at , ot+1).

The function ηt (θt , at , ot+1) is the vector of functions (ηs
t (θt , at , ot+1))s∈S .

(b) There exists an optimal decision strategy of the form

At = d̂t (Θt ).
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Furthermore, the following dynamic program determines such an optimal strat-

egy: Define

VT (θ) := min
a
E

[

ℓ(ST , a)
∣

∣ ΘT = θ
]

,

and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) := min
a
E

[

ℓ(St , a) + Vt+1

(

ηt (θ, a,Ot+1)
) ∣

∣ Θt = θ,At = a
]

.

Then, for each time t and each realization of θ of Θt , the optimal action d̂t (θ)

is the minimizer in the definition of Vt (θ).

4.4 Applications of the Common Information Approach

to Communication, Networked Control, and Queueing

Systems

In this section, we illustrate how the common information approach provides a uni-

fied framework for solving problems that arise in various disciplines such as com-

munication, networked control, and queueing systems. These problems have been

previous investigated using problem specific solution techniques.

4.4.1 Point-to-Point Real-Time Communication with Feedback

Communication problems can be thought of as team problems with the encoders and

the decoders as the decision-makers in the team. Point-to-point feedback commu-

nication, in particular, is a dynamic team problem because: (a) the encoder (and in

some cases the decoder as well) has to make decisions over time based on informa-

tion that is changing with time, and (b) the decoder’s information is directly affected

by the decisions (i.e., the transmitted symbols) selected at the encoder. We will con-

sider the point-to-point feedback communication with the real-time constraint, that

is, we will require the decoder to produce estimates of the current state of the source

in real-time. We describe the model and the common information approach below.

4.4.1.1 Problem Description

Consider the model of real-time communication with noiseless feedback, shown

in Fig. 4.1, that was investigated in [37]. The source Xt ∈ X , t = 1,2, . . . , T is a

discrete-time, finite state Markov chain with a fixed transition probability matrix,

P S(·|·), and a fixed distribution on the initial state. At each time instant, the encoder

can send a symbol Zt ∈ Z to the decoder over a memoryless noisy channel that

is characterized by the transition probability matrix P C(·|·). The received symbol
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Fig. 4.1 A real-time

communication system with

noiseless feedback

Fig. 4.2 Timing diagram for

the real-time communication

system

Yt ∈ Y at the decoder is fed back noiselessly to the encoder. At the end of each

time instant t , the decoder produces an estimate X̂t ∈ X of the current state of

the Markov source. A distortion metric ρ(Xt , X̂t ) measures the accuracy of the

decoder’s estimate. The order of events at time t is the following (see Fig. 4.2):

(i) the state Xt of the Markov source is generated, (ii) the encoder transmits Zt over

the channel, (iii) the channel outputs Yt to the receiver, (iv) Yt is fed back to the

encoder, and (v) the decoder produces the estimate X̂t .

The encoder and the decoder are the two decision makers in this system. The

encoder selects the symbol Zt to be transmitted according to

Zt = ft (X1:t , Y1:t−1,Z1:t−1),

where ft is the encoder’s decision rule at time t and f := (f1, f2, . . . , fT ) is the

encoder’s strategy. The decoder selects its estimate according to

X̂t = gt (Y1:t ),

where gt is the decoder’s decision rule at time t and g := (g1, g2, . . . , gT ) is the

decoder’s strategy. The objective is to select f,g so as to minimize

J (f,g) :=E

[

T
∑

t=1

ρ(Xt , X̂t )

]

. (4.4)

4.4.1.2 Preliminary Result: Ignoring Irrelevant Information

As explained in Sect. 4.2.2, one way to extend the scope of the common informa-

tion approach is to combine it with the person-by-person approach so as to identify

and ignore irrelevant information at the decision makers. For the above example,

a person-by-person approach was used in [37] to show that irrespective of the de-

coder’s strategy, there is no loss of performance in restricting attention to encoding
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strategies of the form

Zt = ft (Xt , Y1:t−1). (4.5)

This result is a consequence of the Markovian nature of the source and the real-time

nature of the distortion function. After restricting attention to encoding strategies of

the form in (4.5), we proceed with the common information approach.

4.4.1.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: After the time of reception of Yt at the decoder,

the information at the decoder is I d
t := {Y1:t }. Just before the time of transmission

of Zt+1 by the encoder, the information at the encoder is I e
t := {Xt+1, Y1:t }.

Between the time of reception of Yt and the time of transmission of Zt+1, the

common information is then defined as

Ct = I d
t ∩ I e

t = {Y1:t }.

The local information at the encoder is I e
t \ Ct = Xt+1 and the local information

at the decoder is I d
t \ Ct = ∅.

The first step of the approach is to construct a coordinated system in which a

coordinator observes the common information and selects the prescriptions for

the encoder and decoder that map their respective local information to their de-

cisions. Since the decoder has no local information, the coordinator’s prescrip-

tion is simply a prescribed decision X̂t for the decoder. The prescription for

encoder, Γt , is a mapping from X to Z . For each possible value of encoder’s lo-

cal information xt+1, the prescription Γt prescribes a decision zt+1 = Γt (xt+1).

The coordinator selects its prescriptions according to a coordination strategy

(ψe
1 ,ψd

1 ), . . . , (ψe
T ,ψd

T ) so that

Γt = ψe
t (Y1:t ), X̂t = ψd

t (Y1:t ). (4.6)

For this coordinated system, the source dynamics, the distortion metric, and the

problem objective are the same as in the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach

is to formulate the decision problem for the coordinator as a POMDP. In order to

do so, we need to identify a state for input–output mapping for the coordinated

system. As suggested in Step 2 of the common information approach, the state

for input–output mapping is a subset of the state of the original dynamic system

(in this case, the source) and the local information at each decision maker. In

this example, the state of the source Xt is sufficient for input–output mapping. In

particular, define the state, action, and observation processes for the coordinator

as:

St := Xt , At = (Γt , X̂t ), Ot := Yt .



4 The Common-Information Approach to Decentralized Stochastic Control 137

It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t ) =P(St+1,Ot+1 | St ,At ). (4.7)

Furthermore, for specific realization of the random variables involved, the right

hand side of (4.7) can be written as

P(xt+1, yt+1 | xt , γt , x̂t ) = P C
(

yt+1 | γt (xt+1)
)

P S(xt+1|xt )

and the distortion cost can be written as

ρ(Xt , X̂t ) = ρ̃(St ,At ),

with a suitably defined ρ̃. Thus, the coordinator’s decision problem can be

viewed as an instance of the POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach

is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1

for the coordinated system, we get the following structural result and dynamic

programming decomposition.

Theorem 4.2 Let Θt be the conditional probability distribution of the state Xt at

time t given the coordinator’s observations Y1:t and actions Γ1:t−1, X̂1:t−1, i.e.,

Θt (x) =P(Xt = x|Y1:t ,Γ1:t−1, X̂1:t−1), x ∈X .

Then,

(a) If θt , γt , x̂t , yt+1 are the realizations of Θt ,Γt , X̂t and Yt+1, the realization of

xth element of the vector Θt+1 is

θt+1(x) =

∑

x′ θt (x
′)P(Xt+1 = x,Yt+1 = yt+1|Xt = x′,Γt = γt , X̂t = x̂t )

∑

x′′,x̃ θt (x′′)P(Xt+1 = x̃, Yt+1 = yt+1|Xt = x′′,Γt = γt , X̂t = x̂t )

=

∑

x′ θt (x
′)P C(Yt+1 = yt+1|Zt+1 = γt (x))P S(Xt+1 = x|Xt = x′)

∑

x′′,x̃ θt (x′′)P C(Yt+1 = yt+1|Zt+1 = γt (x̃))P S(Xt+1 = x̃|Xt = x′′)

=: ηx
t (θt , γt , yt+1). (4.8)

Therefore, we have that θt+1 = ηt (θt , γt , yt+1) where ηt (θt , γt , yt+1) is the vec-

tor of functions (ηx
t (θt , γt , yt+1))x∈X .

(b) There exists an optimal coordinator strategy of the form

Γt = ψe
t (Θt ), X̂t = ψd

t (Θt ).

Furthermore, the following dynamic program determines such an optimal strat-

egy. Define:

VT (θ) := min
x̂
E

[

ρ(XT , x̂)
∣

∣ ΘT = θ
]

,
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and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) := min
x̂,γ

E
[

ρ(Xt , x̂) + Vt+1

(

ηt (θ, γ,Yt+1)
) ∣

∣ Θt = θ,Γt = γ
]

.

Then, for each time t and each realization of θ of Θt , the optimal prescriptions

ψe
t (θ),ψd

t (θ) are the minimizers in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The

fourth step of the common information approach is to show the equivalence be-

tween the original system and the coordinated system. To show this equivalence,

we show that any strategy for the coordinator can be implemented in the original

system and vice versa.

Let ψe
t ,ψd

t , t = 1,2, . . . , T , be the coordinator’s strategy of the form (4.6).

Define the strategies for the encoder and decoder in the original system as fol-

lows:

ft+1(·, Y1:t ) := ψe
t (Y1:t ), gt (Y1:t ) := ψd

t (Y1:t ). (4.9)

For each realization of the common information y1:t and each realization of the

source state xt+1, the encoder and decoder strategies as defined by (4.9) result

in the same symbol zt+1 being transmitted and same estimate x̂t being produced

as in the coordinated system. Thus, the strategies for the encoder and the de-

coder defined by (4.9) will achieve the same expected cost as the coordinator’s

strategies ψe
t ,ψd

t , t = 1,2, . . . , T .

Conversely, given any strategies f = (f1, . . . , fT ), g = (g1, . . . , gT ), for the

encoder and the decoder in the original system, we can construct strategies for

the coordinator that achieve the same expected cost. Simply reverse (4.9) and

define the coordinator’s strategy as:

ψe
t (Y1:t ) := ft+1(·, Y1:t ), ψd

t (Y1:t ) := gt (Y1:t ). (4.10)

Then, for each realization of the common information y1:t and each realization

of the source state xt+1, the coordinator strategies as defined by (4.10) will result

in the same symbol zt+1 being transmitted and same estimate x̂t being produced

as in the original system. Thus, the coordinator’s strategies defined by (4.10) will

achieve the same expected cost as the strategies (f,g).

Consequently, the original system is equivalent to the coordinated system. The

equivalence between the two systems implies that translating a globally optimal

strategy for the coordinator to the original system (using (4.9)) will give globally

optimal strategies for the original system.

5. Translate the solution of the coordinated system to the original system: The last

step of the approach is to translate the result of Theorem 4.2 to the original sys-

tem, which gives the following:

Theorem 4.3 For the real-time communication problem formulated above, there

exist globally optimal encoding and decoding strategies of the form

Zt+1 = f ∗
t+1(Xt+1,Θt ), X̂t = g∗

t (Θt ),
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Fig. 4.3 A networked control

system with communication

over a rate-limited channel

where Θt = P
f1:t (Xt |Y1:t ) and Θt evolves according to (4.8). Furthermore, if

(ψe∗
t ,ψd∗

t ) is an optimal coordination strategy (i.e., the solution of dynamic pro-

gram of Theorem 4.2), then the optimal encoding and decoding strategies are given

by

f ∗
t+1(·,Θt ) = ψe∗

t (Θt ), g∗
t (Θt ) = ψd∗

t (Θt ).

The result of Theorem 4.3 is equivalent to the result of [37, Theorem 2 and (4.4)].

4.4.2 Networked Control Systems

In networked control systems, the controller relies on a communication network

to gather information from the sensors at the plant and/or to send control actions

to actuators at the plant. Communication related imperfections such as rate limited

channels, delays and noise can affect the performance of the control system. A key

question in such systems is whether the communication system and the control sys-

tem can be jointly designed for improved performance. We consider a basic model

of such a system where a sensor needs to communicate with the controller over a

rate limited channel.

4.4.2.1 Problem Description

The structure of the problem above bears considerable similarity to the real-time

communication problem formulated in Sect. 4.4.1.

Consider the model of networked control system with communication over a

rate-limited channel shown in Fig. 4.3. A related problem was first considered

in [36]. The state of the plant Xt ∈ X , t = 1,2, . . . , T is a discrete-time, finite state

controlled Markov chain that evolves according to the equation

Xt+1 = ht (Xt ,Ut ,Wt ),

where Ut is the control action applied by the controller and Wt is the random noise.

The sensor observes the state of the plant and sends a symbol Zt ∈ Z to the con-

troller. We assume that Z is finite; thus, the communication link between the sensor

and the controller is a rate limited communication link. At the end of each time in-

stant t , the controller selects a control action Ut that is applied to the system. The

order of events at time instant t is the following: (i) the state Xt is generated, (ii) the

sensor transmits Zt over the channel, (iii) the controller generates Ut .
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The sensor selects the symbol to be transmitted Zt according to

Zt = ft (X1:t ,Z1:t−1),

the controller selects its action according to

Ut = gt (Z1:t ).

At each time an instantaneous cost ℓ(Xt ,Ut ) is incurred. The objective is to select

f = (f1, . . . , fT ),g = (g1, . . . , gT ) so as to minimize

J (f,g) :=E

[

T
∑

t=1

ℓ(Xt ,Ut )

]

. (4.11)

4.4.2.2 Preliminary Result: Ignoring Irrelevant Information

The structure of the problem above bears considerable similarity to the real-time

communication problem formulated in Sect. 4.4.1. As in that example, using a

person-by-person approach, we can show that irrespective of the controller’s strat-

egy, there is no loss of performance in restricting attention to sensor strategies of the

form

Zt = ft (Xt ,Z1:t−1).

This result is analogous to structural result of encoder’s strategies in (4.5) and is

derived using similar arguments; see [36] for a proof of a similar result for a slightly

different channel model.

4.4.2.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: Between the time of reception of Zt at the con-

troller and the time of transmission of Zt+1 by the sensor, the information at the

controller is I c
t := {Z1:t }, and the information at the sensor is I s

t := {Xt+1,Z1:t }.

The common information is then defined as

Ct = I c
t ∩ I s

t = {Z1:t }.

The local information at the sensor is I s
t \ Ct = Xt+1 and the local information

at the controller is I c
t \ Ct = ∅.

The first step of the approach is to construct a coordinated system in which a

coordinator observes the common information and selects the prescriptions for

the sensor and the controller that map their respective local information to their
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decisions. Since the controller has no local information, the coordinator’s pre-

scription is simply a prescribed action Ut for the controller. The prescription for

the sensor, Γt , is a mapping from X to Z . For each possible value of sensor’s lo-

cal information xt+1, the prescription Γt prescribes a decision zt+1 = Γt (xt+1).

The coordinator selects its prescriptions according to a coordination strategy

(ψ s
1 ,ψc

1), . . . , (ψ s
T ,ψc

T ) so that

Γt = ψ s
t (Z1:t ), Ut = ψc

t (Z1:t ). (4.12)

For this coordinated system, the plant dynamics, the loss function and the prob-

lem objective are the same as in the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach

is to formulate the decision problem for the coordinator as a POMDP. As in

Sect. 4.4.1, define the state, action, and observation processes for the POMDP as

St := Xt , At := (Γt ,Ut ), Ot := Zt .

It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t ) =P(St+1,Ot+1 | St ,At )

and the instantaneous cost can be written as

ℓ(Xt ,Ut ) = ℓ̃(St ,At ),

with a suitably defined ℓ̃. Thus, the coordinator’s decision problem can be viewed

as an instance of the POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach

is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1

for the coordinated system, we get the following structural result and dynamic

programming decomposition.

Theorem 4.4 Let Θt be the conditional probability distribution of the state Xt at

time t given the coordinator’s observations Z1:t and actions Γ1:t−1, X̂1:t−1, i.e.,

Θt (x) =P(Xt = x | Z1:t ,Γ1:t−1,U1:t−1), x ∈ X .

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt (θt , γt , ut , zt+1).

(b) There exists an optimal decision strategy of the form

Γt = ψ s
t (Θt ), X̂t = ψc

t (Θt ).
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Furthermore, the following dynamic program determines such an optimal strat-

egy: Define

VT (θ) := min
u
E

[

ℓ(XT , u)
∣

∣ ΘT = θ
]

,

and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) := min
u,γ

E
[

ℓ(Xt , u) + Vt+1

(

ηt (θ, γ,Zt+1)
) ∣

∣ Θt = θ,Γt = γ
]

.

Then, for each time t and each realization of θ of Θt , the optimal prescriptions

(ψ s
t (θ),ψc

t (θ)) are the minimizers in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The

fourth step of the common information approach is to show the equivalence be-

tween the original system and the coordinated system. This equivalence follows

from the same argument used in Sect. 4.4.1. In particular, the optimal strategy

for the coordinator can be translated to optimal strategies for the sensor and the

controller in the original system.

5. Translate the solution of the coordinated system to the original system: The last

step of the approach is to translate the result of Step 3 to the original system,

which gives the following result.

Theorem 4.5 For the networked control problem formulated above, there exist

globally optimal strategies for the sensor and the controller of the form

Zt+1 = f ∗
t+1(Xt+1,Θt ), Ut = g∗

t (Θt )

where Θt = P
f1:t (Xt |Z1:t ). Furthermore, if ψ s∗

t ,ψc∗
t is an optimal coordination

strategy (i.e., a solution of the dynamic program of Theorem 4.4), then the optimal

sensor and controller strategies are given by

f ∗
t+1(·,Θt ) = ψ s∗

t (Θt ), g∗
t (Θt ) = ψc∗

t (Θt ).

The result of Theorem 4.5 is equivalent to the result of [36, Theorem 3.2] when

specialized to the above model.

4.4.3 Paging and Registration in Cellular Networks

In cellular networks, the network needs to keep track of the location of a mobile

station. This tracking may be done in two ways: the network may either page the

mobile station, or the mobile station may register its location with the network.

Both operations have an associated cost. The problem of finding optimal paging

and registration strategies can be viewed as a team problem with the mobile station

and the network operator as the decision-makers.
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4.4.3.1 Problem Description

Consider a cellular network consisting of one mobile station (MS) and one network

operator (N). The mobile station’s motion is described by a discrete-time, finite

state Markov chain Xt ∈ X , t = 1,2, . . . , with known transition probability matrix.

Each state represent a cell of the cellular network. At each time instant t , the MS

may or may not register with the network. The cost of registration is r . If the MS

registers with the network at time t , the network learns its location Xt . At each

time t , the network may receive an exogenous paging request to seek MS’s location.

The exogenous paging request is an i.i.d. binary process which is independent of the

motion of MS. The probability of a paging request at any time t is p. If a paging

request arrives, the network operator must decide an order in which the cells are to

be searched in order to locate the MS. We assume that if the MS is present in the cell

being searched, the network successfully finds it. Further, we assume that the time

it takes to search one cell is negligible compared to the time step of MS’s motion,

so that the paging request is completed within one time step. The cost of paging

depends on the number of cells that are searched before MS is located. This model

was investigated in [5].

The order of events at time instant t is the following: (i) The MS moves to loca-

tion Xt according to a probability distribution that depends on its previous location;

(ii) A paging request arrives with probability p; (iii) If a paging request arrives, the

network operator must decide an order in which the cells are to be searched; (iv) If

no paging request is made, the MS decides whether or not to register its location

with the network.

Define a random variable Yt as

Yt =

⎧

⎪

⎨

⎪

⎩

Xt−1 if the network learns MS location either by a paging

request or by MS registration at time t − 1,

ε otherwise.

Let σ(X ) denote the set of all permutations of the locations in X . At the beginning

of time t , if the network received a paging request, it selects UN
t ∈ σ(X ) according

to

UN
t = gt (Y1:t ).

If a paging request does not arrive, the MS makes a decision UMS
t ∈ {0,1} according

to

UMS
t = ft (X1:t , Y1:t ),

where UMS
t = 1 represents a decision to register and UMS

t = 0 represents a decision

to not register with the network. The collection of functions f := (f1, f2, . . . , fT )

and g := (g1, g2, . . . , gT ) are the strategies of the MS and the network, respectively.
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The objective is to select f,g so as to minimize

J (f,g) :=E

[

T
∑

t=1

(1 − p)rUMS
t + pkτ

(

Xt ,U
N
t

)

]

, (4.13)

where p is the probability of paging request arrival, r is the cost of registration by

MS, k is the cost of searching one cell, τ(x,uN) is the position of x in the permu-

tation specified by uN and, therefore, τ(Xt ,U
N
t ) is the number of cells searched by

the network before MS is located at time t .

4.4.3.2 Preliminary Result: Ignoring Irrelevant Information

For the above example, we may use an argument similar to the argument based on

the person-by-person approach used in Sect. 4.4.1 to show that irrespective of the

strategy of the network, there is no loss of performance in restricting attention to the

strategies of the MS of the form

UMS
t = ft (Xt , Y1:t ). (4.14)

This result is a consequence of the Markovian nature of the MS motion and the fact

that a paging request is completed within one time step. After restricting attention

to MS strategies of the form in (4.14), we proceed with the common information

approach.

4.4.3.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: At the beginning of time t , the information at

the network is IN
t := {Y1:t }, and the information at the MS is IMS

t := {Xt , Y1:t }.

The common information at time t is

Ct = IN
t ∩ IMS

t = {Y1:t }.

The local information at the network is IN
t \ Ct = ∅ and the local information at

the MS is IMS
t \ Ct = Xt .

The first step of the approach is to construct a coordinated system in which

a coordinator observes the common information and selects the prescriptions

for the network and the MS. Since the network has no local information, the

coordinator’s prescription is simply a prescribed order UN
t in which to search

the cells if a paging request arrives. The prescription Γt for the MS is a map-

ping from X to {0,1}. If a paging request does not arrive, the prescription Γt

prescribes a registration decision uMS
t = Γt (xt ) for each possible value of MS
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location xt . The coordinator selects its prescriptions according to a coordination

strategy (ψMS
1 ,ψN

1 ), . . . , (ψMS
T ,ψN

T ) so that

Γt = ψMS
t (Y1:t ), UN

t = ψN
t (Y1:t ).

For this coordinated system, the MS motion dynamics, the cost function and the

problem objective are the same as in the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach

is to formulate the decision problem for the coordinator as a POMDP. In order to

do so, we define the state, action and observation processes of the POMDP as:

St := Xt , At =
(

Γt ,U
N
t

)

, Ot := Yt .

It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t ) =P(St+1,Ot+1 | St ,At )

and that the instantaneous cost (1 − p)rUMS
t + pkτ(Xt ,U

N
t ) can be written as

a function of St and At . Thus, the coordinator’s decision problem can be viewed

as an instance of the POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach

is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1

for the coordinated system, we get the following structural result and dynamic

programming decomposition.

Theorem 4.6 Let Θt be the conditional probability distribution of the state Xt at

time t given the coordinator’s observations Y1:t and actions Γ1:t−1, i.e.,

Θt (x) :=P(Xt = x | Y1:t ,Γ1:t−1), x ∈ X .

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt (θt , γt , yt+1).

(b) There exists an optimal decision strategy of the form

Γt = ψMS
t (Θt ), UN

t = ψN
t (Θt ).

Furthermore, the following dynamic program determines such an optimal strat-

egy: Define

VT (θ) := min
γ,uN

E
[

(1 − p)rΓT (XT ) + pkτ
(

XT ,UN
T

)
∣

∣ ΘT = θ,

ΓT = γ,Un
T = uN

]

,
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and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) := min
γ,uN

E
[

(1 − p)rΓt (Xt ) + pkτ
(

Xt ,U
N
t

)

+ Vt+1

(

ηt (θ, γ,Yt+1)
) ∣

∣ Θt = θ,Γt = γ,UN
t = uN

]

.

Then, for each time t and each realization of θ of Θt , the optimal prescriptions

(ψMS
t (θ),ψN

t (θ)) are the minimizers in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The

fourth step of the common information approach is to show the equivalence be-

tween the original system and the coordinated system. This equivalence follows

from the same argument used in Sect. 4.4.1. In particular, the optimal strategy

for the coordinator can be translated to optimal strategies for the MS and the

network in the original system.

5. Translate the solution of the coordinated system to the original system: The last

step of the approach is to translate the result of Step 3 to the original system,

which gives the following result.

Theorem 4.7 For the paging and registration problem formulated above, there ex-

ist globally optimal strategies of the form

UN
t = g∗

t (Θt ), UMS
t = f ∗

t (Xt ,Θt ),

where Θt =Pf1:t (Xt |Y1:t ). Furthermore, if (ψMS∗
t ,ψN∗

t ) is an optimal coordination

strategy (i.e., the solution of dynamic program of Theorem 4.6), then the optimal

paging and registration strategies (f∗,g∗) are given by

f ∗
t (·,Θt ) = ψMS∗

t (Θt ), g∗
t (Θt ) = ψN∗

t (Θt ).

The result of Theorem 4.7 is equivalent to the result of [5, Sect. III-C]. The

dynamic program was using in [5] to identify further structural properties of the

optimal paging and registration strategies when the motion of the MS follows a

symmetric random walk.

4.4.4 Multiaccess Broadcast Systems

In a multiaccess broadcast system, multiple users communicate to a common re-

ceiver over a broadcast medium. If more than one user transmits at a time, the trans-

missions “collide” and the receiver cannot decode the packets due to interference.

Such systems can be viewed as team problems in which all users must cooperate to

maximize system throughput. In this section, we consider a specific variation of a

two-user multiaccess broadcast system.
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4.4.4.1 Problem Description

Consider a two-user multiaccess broadcast system. At time t , W i
t ∈ {0,1} packets

arrive at each user according to independent Bernoulli processes with P(W i
t = 1) =

pi , i = 1,2. Each user may store only Xi
t ∈ {0,1} packets in a buffer. If a packet

arrives when the user-buffer is full, the packet is dropped.

Both users may transmit U i
t ∈ {0,1} packets over a shared broadcast medium. If

only one user transmits at a time, the transmission is successful and the transmitted

packet is removed from the queue. If both users transmit simultaneously, packets

“collide” and remain in the queue. Thus, the state update for user 1 is given by

X1
t+1 = max

(

X1
t − U1

t ·
(

1 − U2
t

)

+ W 1
t ,1

)

.

The state update rule for user 2 is symmetric dual of the above.

Due to the broadcast nature of the communication medium, each user knows

the control action of the other user after one-step delay. Thus, each user chooses a

transmission decision as

Ut = gi
t

(

Xi
1:t ,U1:t−1

)

where Ut = (U1
t ,U2

t ). A user can transmit only if it has a packet, thus only actions

U i
t ≤ Xi

t are feasible.

Instead of costs, it is more natural to work with rewards in this example. The ob-

jective is to maximize throughput, or the number of successful packet transmissions.

Thus, the per unit reward is r(X,U) = U1 ⊕ U2, where ⊕ means binary XOR. The

objective is to maximize

J (g) =E

[

T
∑

t=1

U1
t ⊕ U2

t

]

which corresponds to the total throughput.

When the arrival rates at both users are the same (p1 = p2), the above model

corresponds to the two-user multiaccess broadcast system considered in [6, 12, 14,

21]. Slight variations of the above model were considered in [25, 32].

4.4.4.2 Preliminary Result: Ignoring Irrelevant Information

As suggested in Sect. 4.2.2, we may use the person-by-person approach to identify

and ignore irrelevant information at the decision makers before applying the com-

mon information approach. For the above example, a person-by-person approach

was used in [12] to show that there is no loss of performance in restricting attention

to the transmission strategies of the form

U i
t = gi

t

(

Xi
t ,U1:t−1

)

. (4.15)
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This result is a consequence of the fact that irrespective of the transmission strate-

gies, the processes {X1
t } and {X2

t } are conditionally independent given U1:t−1. After

restricting attention to transmission strategies of the form (4.15), we proceed with

the common information approach.

4.4.4.3 Applying the Common Information Approach

We follow the five-step outline in Sect. 4.2.3.

1. Construct a coordinated system: At the beginning of time t , the information at

user i is I i
t = {Xi

t ,U1:t−1}. Thus, the common information at time t is

Ct = I 1
t ∩ I 2

t = {U1:t−1}.

The local information at user i is I i
t \ Ct = Xi

t .

The first step of the common information approach is to construct a coordi-

nated system in which a coordinator observes the common information and se-

lects the prescriptions that map each user’s local information to its actions. The

prescription Γ i
t for user i is a mapping from X i to U i . For each realization xi

t

of the local information, the prescription Γ i
t prescribes a decision ui

t = Γ i
t (xi

t ).

Since, Γ i
t (0) = 0, the prescription Γ i

t is completely specified by Γ i
t (1), which

we denote by Yt ∈ {0,1}. Then, the control action is U i
t = Xi

tY
i
t . The coordinator

selects its prescriptions according to a coordination strategy (ψ1, . . .ψT ), so that

(

Y 1
t , Y 2

t

)

= ψt (U1:t−1).

For this coordinated system, the queue dynamics, the reward function, and the

problem objective are the same as the original system.

2. Formulate the coordinated system as a POMDP: The second step of the approach

is to formulate the decision problem for the coordinator as a POMDP. Define the

state, action, and observation processes for the POMDP as

St :=
(

X1
t ,X

2
t

)

, At :=
(

Y 1
t , Y 2

t

)

, Ot :=
(

U1
t−1,U

2
t−1

)

.

It is easy to verify that

P(St+1,Ot+1 | S1:t ,O1:t ,A1:t ) =P(St+1,Ot+1 | St ,At )

and the instantaneous reward function can be written as

r(Xt ,Ut ) = U1
t ⊕ U2

t = X1Y 1 ⊕ X2Y 2 =: r̃(St ,At ).

Thus, the coordinator’s decision problem can be viewed as an instance of the

POMDP model of Sect. 4.3.

3. Solve the resultant POMDP: The third step of the common information approach

is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1

for the coordinated system, we get the following structural result and dynamic

programming decomposition.
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Theorem 4.8 Let Θt be the conditional probability distribution of the state Xt =

(X1
t ,X

2
t ) given the coordinator’s observations U1:t−1 and actions Y1:t−1, i.e.,

Θt (x) =P(Xt = x | U1:t−1,Y1:t−1).

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt

(

θt , y
1
t , y2

t , u1
t , u

2
t

)

.

(b) There exists an optimal decision strategy of the form

(

Y 1
t , Y 2

t

)

= ψt (Θt ).

Furthermore, the following dynamic program determines such an optimal strat-

egy: Define

VT (θ) := min
(y1,y2)

E
[

X1
T y1 ⊕ X2

T y2
∣

∣ ΘT = θ
]

,

and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) := min
(y1,y2)

E
[

X1
t y

1 ⊕ X2
t y

2 + Vt+1(ψt

(

θ, y1, y2,X1
t y

1,X2
t y

2
)
∣

∣ Θt = θ
]

Then, for each time t and each realization θ of Θt , the optimal prescription

ψt (θ) is the minimizer in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The

fourth step of the common information approach is to show the equivalence be-

tween the original system and the coordinated system. This equivalence follows

from the same argument used in Sect. 4.4.1. In particular, the optimal strategy for

the coordinator can be translated to optimal transmission strategies in the original

system.

5. Translate the solution of the coordinated system to the original system: The last

step of the approach is to translate the result of Step 3 to the original system,

which gives the following result.

Theorem 4.9 For the two-user multiaccess broadcast system formulated above,

there exists optimal transmission strategies of the form

U i
t = Xi

t · ψ i
t (Θt )

where Θt =Pψ1:t (Xt |U1:t−1). Furthermore, an optimal ψ∗
t = (ψ∗,1,ψ∗,2) is given

by the solution of the dynamic program in Theorem 4.8.

The result of Theorem 4.9 is equivalent to the result of [12, Proposition 14].

The dynamic program (extended to infinite horizon average reward setup) was used

in [12] to explicitly characterize the optimal transmission strategies when p1 = p2.
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4.5 Application to Delayed Sharing Information Structures

In this section, we present the result of [19], in which we use the common infor-

mation approach to solve a long standing open problem associated with delayed

sharing information structures.

In a decentralized control system with delayed sharing information structure, the

controllers sharing their observations and control actions with each other after a

fixed delay. The delayed sharing information structure is a link between classical

information structure, which may be viewed as a degenerate decentralized control

system in which controllers instantaneous sharing their observations and control

actions, and a completely decentralized information structure, where there is no

“lateral” sharing of information.

This information structure was proposed by Witsenhausen in a seminal paper [39]

where he conjectured the structure of the globally optimal control strategies. Later

Varaiya and Walrand [32] showed that Witsenhausen’s assertion is true when the

delay in the sharing of information is one (called one-step delayed sharing), but

false for larger sharing delay; see [19] for a more detailed history of the problem.

4.5.1 Problem Description

The delayed-sharing information structure consists of n controllers. Let Xt denote

the state of the system, Y i
t denote the observations of controller i, and U i

t denote the

control action of controller i. The system evolves according to

Xt+1 = f i
t

(

Xt ,Ut ,W
0
t

)

where Ut = (U1
t , . . . ,Un

t ) and {W 0
t }Tt=1 is an i.i.d. noise process that is independent

of the initial state X1. The observations of the controllers are given by

Y i
t = hi

t

(

Xt ,W
i
t

)

, i = 1, . . . , n

where {W i
t }

T
t=1, i = 1, . . . , n, are i.i.d. noise process that are independent of each

other and also independent of {W 0
t }Tt=1 and X1.

The controllers share their observations and control actions with each other after

a k-step delay. Thus, the control actions are selected as follows:

U i
t = gi

t

(

Y1:t−k,U1:t−k, Y
i
t−k+1:t ,U

i
t−k+1:t−1

)

where Yt = (Y 1
t , . . . , Y n

t ).

The instantaneous loss function is given by ℓ(Xt ,Ut ).

For simplicity, assume that all system variables are finite valued and Xt , Y i
t , U i

t ,

W i
t take values in time-homogeneous finite sets X , Y i , U i , and W i , respectively.
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The objective is to choose control strategies g1:n where gi = (gi
1, . . . , g

i
T ), to

minimize the expected total loss

J
(

g1:n
)

=E(g1:n)

[

T
∑

t=1

ℓ(Xt ,Ut )

]

.

4.5.2 Applying the Common Information Approach

1. Construct a coordinated system: The first step of the approach is to construct the

coordinated system. At the beginning of time t , the information at controller i is

I i
t =

(

Y1:t−k,U1:t−k, Y
i
t−k+1:t ,U

i
t−k+1:t−1

)

.

Thus, the common information at all controllers is

Ct =

n
⋂

i=1

I i
t = (Y1:t−k,U1:t−k)

and the local information at controller i is Li
t = (Y i

t−k+1:t ,U
i
t−k+1:t−1).

Consider a coordinated system where the coordinator observes the common

information and selects prescriptions (Γ 1
t , . . . ,Γ n

t ) for the controllers where Γ i
t

maps the local information Li
t to control action U i

t , i.e., for each possible value

lit of the local information Li
t , the prescription Γ i

t prescribes a control action

ui
t = Γ i

t (lit ). For convenience, define Zt = (Yt−k,Ut−k) so that Ct = Z1:t . The

coordinator selects its prescriptions according to a coordination law ψt so that

(

Γ 1
t , . . . ,Γ n

t

)

= ψt (Ct ) = ψt (Z1:t ).

For this coordinated system, the source dynamics, the loss function, and the prob-

lem objective are the same as the original problem.

2. Formulate the coordinated system as a POMDP: The second step of the approach

is to formulate the coordinated system as a POMDP. In order to do so, define the

state, observation, and action processes of the POMDP as

St = (Xt ,Lt ), Ot = Zt , At =
(

Γ 1
t , . . . ,Γ n

t

)

.

It is easy to verify that

P(St+1,Ot+1 | S1:t ,A1:t ) =P(St+1,Ot+1 | St ,At )

and that the instantaneous loss ℓ(Xt ,Ut ) = ℓ̃(St ,At ) for an appropriately de-

fined ℓ̃. Hence, the decision problem at the coordinator is a POMDP.
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3. Solve the resultant POMDP: The third step of the common information approach

is to solve the resultant POMDP at the coordinated system. Using Theorem 4.1

for coordinated system defined above, we get the following structural result and

dynamic programming decomposition.

Theorem 4.10 Let Θt be the conditional probability distribution of the state St

given the coordinator’s history of observations Ct and actions (Γ 1
1:t−1, . . . ,Γ

n
1:t−1),

i.e., for any realization s of St

Θt (s) =P
(

St = s
∣

∣ Ct ,Γ
1

1:t−1, . . . ,Γ
n

1:t−1

)

.

Then,

(a) The realization θt of Θt updates according to a nonlinear filtering equation,

θt+1 = ηt

(

θt , zt+1, γ
1
t , . . . , γ n

t

)

where zt+1 = (yt−k+1,ut−k+1).

(b) There exists an optimal coordination strategy of the form

(

Γ 1
t , . . . ,Γ n

t

)

= ψt (Θt ).

Furthermore, the following dynamic program determines such an optimal strat-

egy (recall that U i
t = Γ i

t (Li
t )): Define

VT (θ) = min
(γ 1

T ,...,γ n
T )

E
[

ℓ(XT ,UT )
∣

∣ ΘT = θ,Γ 1
T = γ 1

T , . . . ,Γ n
T = γ n

T

]

and for t = T − 1, T − 2, . . . , 1, recursively define

Vt (θ) = min
(γ 1

t ,...,γ n
t )

E
[

ℓ(Xt ,Ut ) + Vt+1

(

ηt

(

θ,Zt+1, γ
1
t , . . . , γ n

t

))
∣

∣ Θt = θ,

Γ 1
t = γ 1

t , . . . ,Γ n
t = γ n

t

]

. (4.16)

Then, for each time t and each realization θ to Θt , the optimal prescription

(γ 1
t , . . . , γ n

t ) is the minimizer in the definition of Vt (θ).

4. Show equivalence between the original system and the coordinated system: The

fourth step of the common information approach is to show the equivalence be-

tween the original system and the coordinated system. This equivalence follows

from the same argument used in Sect. 4.4. As a consequence, we can translate an

optimal coordination strategy for the coordinated system to an optimal control

strategy for the original system.

5. Translate the solution of the coordinated system to the original system: The last

step of the approach is to translate the results of Step 3 to the original system,

which gives the following result.
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Theorem 4.11 For the delayed sharing information structure, there exists optimal

control strategies of the form

U i
t = gi

t

(

Li
t ,Θt

)

where Θt =P(Xt ,Lt | Ct ). Furthermore, if ψ∗ is the optimal coordination strategy

(i.e., the solution to the dynamic program of Theorem 4.10), and ψ∗,i denote its ith

component, then the optimal control strategy g∗
1:T is given by

g
∗,i
t (·, θ) = ψ

∗,i
t (θ).

4.6 Conclusion

In centralized stochastic control, the controller’s belief on the current state of the

system plays a fundamental role for predicting future costs. If the control strategy for

the future is fixed as a function of future beliefs, then the current belief is a sufficient

statistic for future costs under any choice of current action. Hence, the optimal action

at any time t is only a function of the controller’s belief on the system state at

time t . In decentralized problems, where there are many controllers with different

information interacting with each other, the controllers’ belief on the system state

and their predictions of future costs are not expected to be consistent. Furthermore,

since the costs depend both on system state as well as other controllers’ actions, any

controller’s prediction of future costs must involve a belief on system state along

with a prediction of other controllers’ actions. The above discussion describes the

difficulties that arise if one attempts to use a controller’s belief on the system state

for decision-making in decentralized systems.

The common information approach attempts to address the above difficulties

based on two key observations: (i) Beliefs based on common information are consis-

tent among all controllers and can serve as a consistent sufficient statistic. (ii) Even

though controllers cannot accurately predict each other’s control actions, for any

realization of common information they can know the exact mapping used by each

controller to map its local information to its control actions. These observations mo-

tivate the creation of a coordinated system with a fictitious coordinator which ob-

serves only the common information, forms its beliefs based on the common infor-

mation, selects prescriptions (described in Sects. 4.4 and 4.5) and has the same ob-

jective as the original decentralized stochastic control problem. If the system model

is such that the data available at the coordinator—the common information—is in-

creasing with time, then the decision problem at the coordinator is a centralized

stochastic control problem. This centralized problem is equivalent to the original

decentralized stochastic control problem. This equivalence allows the use of results

obtained from centralized stochastic control theory to obtain: (i) qualitative proper-

ties of optimal strategies for the controllers in the original decentralized stochastic

control problem, and (ii) a dynamic program for determining optimal strategies for

all controllers. The fictitious coordinator is invented purely for conceptual clarity.
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It is important to realize that the coordinator’s problem can be solved by each con-

troller in the original system. Thus, the presence of the coordinator is not necessary.

Nevertheless, its presence allows one to look at the original optimization problem

from the view point of a “higher level authority” and simultaneously determine how

each controller maps its local information to its action for the given realization of

common information.

A key assumption in the common information approach is that common informa-

tion is increasing with time. This assumption ensures that the coordinator has perfect

recall and connects the coordinator’s problem with centralized stochastic control

and POMDPs. The connection between the coordinator’s problem and POMDPs

can be used for computational purposes as well. The dynamic program obtained

for the coordinator is essentially similar to that for POMDPs. In particular, just as

in POMDPs, the value-functions can be shown to be piecewise linear and concave

function of the coordinator’s belief. This characterization of value functions is uti-

lized to find computationally efficient algorithms for POMDPs. Such algorithmic

solutions to general POMDPs are well-studied and can be employed here. We re-

fer the reader to [45] and references therein for a review of algorithms to solve

POMDPs.

This chapter illustrates how common information approach can be used to solve

decentralized stochastic control/decision-making problems that arise in control,

communication and queueing systems and to resolve a long-standing theoretical

problem on the structure of optimal control strategies in delayed sharing informa-

tion structures.

As is the case for the designer’s approach discussed in Sect. 4.1, the common

information approach may be combined with the person-by-person approach as fol-

lows. First, use the person-by-person approach to identify qualitative properties of

globally optimal strategies (e.g., identifying irrelevant information at controllers).

Then, use the common information approach to further refine the qualitative proper-

ties and determine globally optimal strategies with those properties. In fact, all the

examples of Sect. 4.4 used such a combined approach.

In this chapter, and in [20], it is assumed that the system has a partial history shar-

ing information structure in which: (i) part of the past data (observations and control

actions) of each controller is commonly available to all controllers; and (ii) all con-

trollers have perfect recall of this commonly available data. Although this particular

information structure makes it easier to describe the common information approach,

it is not necessary for the approach to work. In particular, the common information

approach applies to all sequential decision making problems (see [15] for a complete

exposition).
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