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Abstract— We consider a human-automation team jointly
solving binary classification tasks over multiple time
stages. At each stage, the automation observes the data
for a batch of classification tasks, classifies a subset of
them and refers the others to the human. The human’s per-
formance depends on task load and fatigue, where fatigue
is modeled as a controlled Markov process dependent on
the past task loads. We formulate the automation’s problem
of deciding which tasks to refer as a Markov decision pro-
cess and present a sampling-based approximate dynamic
program that leverages task independence across time and
the structure of the recently obtained single-stage optimal
allocation policy. We then present a numerical study com-
paring our solution against a baseline policy that does not
explicitly account for fatigue dynamics.

Index Terms— Human-in-the-loop control, Markov pro-
cesses, Stochastic optimal control

I. INTRODUCTION

Human-automation teaming is prevalent in aviation, driv-
ing assistance, healthcare, etc., where automation can help
human operators sustain task performance over long periods.
In such settings, the accumulation of mental fatigue reduces
the operator’s cognitive flexibility and situational awareness,
potentially compromising system performance and safety [1].
Unlike physical fatigue, mental fatigue manifests itself subtly,
increasing the risk of errors or lapses in judgment [2].

We consider the design of a decision referral system [3]
for human-automation teams performing binary classification
tasks, where the automation can refer some of the tasks to
the human operator, and classifies the rest. For example, a
radiologist and an automation may collaborate to classify
medical images (e.g., MRI scans) as “normal” or “abnor-
mal” [4]. The automation can process images quickly and
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flag ambiguous cases for human evaluation. However, operator
fatigue accumulates over time [5], eventually resulting in a
higher risk of errors, and hence it is crucial to consider the
impact of fatigue when determining which tasks, and how
many, to refer to the human. Moreover, instead of relying
solely on the immediate fatigue level, an adaptive system that
considers the dynamic nature of fatigue over time can improve
collaboration and decision-making efficiency.

Task allocation in human-automation teams, shaped by
workload, cognitive state, and system performance, is studied
for instance in [6]–[8]. The adaptive strategies in [8] consider
the impact of workload and trust dynamics on the human’s
decision performance and willingness to follow the automa-
tion’s recommendations. In [7], the automation takes the
cognitive load of the human operator into account to optimally
allocate the tasks of an autonomous robot. An adaptive system
switching tasks between automated and manual modes based
on the operator’s electroencephalographic signals is studied
in [6]. Cognitive models, such as ACT-R, are used in [9], [10]
for dynamic task reallocation by monitoring workload and
performance, helping predict operator behavior and evaluate
task allocation alternatives.

Some studies consider tasks buffered in a queue and de-
velop policies to dispatch these tasks sequentially to humans
with a utilization-dependent service rate [11], to stabilize the
queues [12] and optimize attention allocation [13]. However,
they abstract the nature of the tasks and do not consider
joint decision-making aspects. The papers [3], [14] propose
decision referral strategies for binary classification tasks, when
increasing task load degrades operator performance. However,
they do not consider the dynamics of cognitive states like
fatigue. Here we present a decision referral system assuming a
given dynamic model of fatigue. Such models can be identified
through studies that measure fatigue evolution with cognitive
performance [15], through physiological measurements (e.g.,
heart rate, brain activity, eye movement) [16], [17] or through
subjective questionnaires [18].

Our first contribution is to formulate the fatigue-aware de-
cision referral problem as a Markov decision process (MDP).
Second, we propose an Approximate Dynamic Program (ADP)
to solve the MDP, exploiting the structure of the optimization
problem to simplify the computations. Finally, we evaluate
and compare the performance of our policy against a policy



that bases its decisions solely on instantaneous fatigue levels,
demonstrating the importance of taking fatigue dynamics into
account. In the next section we present the system model. In
Section III, we provide details on the dynamic programming
solution and our proposed ADP approach. We discuss numeri-
cal simulation results in Section IV and conclude in Section V.

Notation: We use Z and R to denote the sets of integers
and real numbers. For M ∈ Z with M ≥ 1, [M ] denotes the
set {1, . . . ,M}. The cardinality of a set S is denoted |S|.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we present a model for a human-automation
team jointly solving binary classification tasks over multiple
stages. We build on the model presented in [3] for a human-
automation team solving a single batch of binary classification
tasks. We extend that model to work over multiple stages and
include the human’s fatigue state into the model.

Consider a human-automation team jointly performing suc-
cessive batches of binary classification tasks over a finite
horizon T . At each time t ∈ [T ], a batch consists of K
independent and identically distributed (i.i.d.) tasks, indexed
by k ∈ [K]. At time t, each task k ∈ [K] has an unknown
binary state Ht,k ∈ {H0,H1}, where {Ht,k}t∈[T ],k∈[K] are
independent across tasks and time. The prior probability on
the state of each task k ∈ [K] at time t ∈ [T ] is known,
given by πi = P (Ht,k = Hi), i ∈ {0, 1}, and is the same
across all tasks and time. For each task k ∈ [K] at time t, the
automation and the human receive random observations Y a

t,k ∈
Ya and Y h

t,k ∈ Yh respectively, which depend on the true state
Ht,k and are assumed conditionally independent given Ht,k.
Moreover, for m ∈ {a, h}, the conditional distribution Y m

t,k

given Ht,k is the same for each k ∈ [K] and t ∈ [T ]. For ease
of notation, we use Y a

t and Y h
t to denote the random vectors

Y a
t,1:K and Y h

t,1:K associated with a batch of tasks.
In addition to the observations for each task, the automation

also observes the mental fatigue state1 of the human operator at
each time t, denoted by Ft ∈ F , where F is the set of possible
fatigue states. This observation could be provided explicitly by
the human for instance using the instantaneous self assessment
(ISA) [19] via the interface, or inferred from physiological
measurements. We assume that the human fatigue state evolves
in a controlled Markovian manner with a general functional
representation given by

Ft+1 = ϕ(Ft, wt, ηt), (1)

where wt is the task load (i.e., the number of tasks referred to
the human) at time t and {ηt}t≥1 is a noise process, which is
i.i.d. across time, and independent of the processes {Y a

t }t≥1,
{Y h

t }t≥1, and {Ht,1:K}t≥1.
The system operates as follows. At time t, the automation

observes the data Y a
t for the entire batch of tasks, as well as

the human’s state Ft. It then refers a subset of the tasks to
the human and classifies the rest as H0 or H1. Let Nt ⊆ [K]
denote the indices of the tasks referred to the human (note
that wt = |Nt|). For each task n ∈ Nt the human makes an
observation Y h

t,n and classifies it as H0 or H1.

1The methodology generalizes to cognitive states other than fatigue, as long
as we can identify the required dynamic and performance models.

A. Example of Fatigue Model
Research shows that sustained cognitive engagement under

high task load increases mental fatigue [1]. The following
example of dynamic fatigue model is a special case of the
general functional representation in (1), where fatigue grows
with task load. Suppose F = {0, 1, 2, 3} and

P(Ft+1 = j | Ft = i, |Nt| = wt) = [Λ(B(wt))]ij

where B(w) = ⌈4w/K⌉ and Λ(·) are transition matrices

Λ(1) =

[
0.8 0.2 0 0
0.3 0.5 0.2 0
0 0.3 0.5 0.2
0 0 0 1

]
, Λ(2) =

[
0.4 0.6 0 0
0.1 0.3 0.6 0
0 0.1 0.3 0.6
0 0 0 1

]
,

Λ(3) =

[
0 0.7 0.3 0
0 0 0.7 0.3
0 0 0.8 0.2
0 0 0 1

]
, Λ(4) =

[
0 0.4 0.6 0
0 0 0.4 0.6
0 0 0 1
0 0 0 1

]
.

Here, B is a weakly increasing function and as B(wt) in-
creases, the probability of transitioning to higher fatigue states
increases. This model includes fatigue recovery, where lower
task loads (when B(wt) = 1 or 2) allow for a chance of
transitioning to a lower fatigue state. On the other hand, the
fatigue state Ft = 3 is an absorbing state, from which fatigue
recovery does not occur [5].

B. Operator Performance with Task Load and Fatigue
We assume that the human classifies a task n ∈ Nt based

solely on the observation Y h
t,n, without accounting for the

potentially informative fact that the automation decided to
refer this task. This assumption can be justified in practice
by the operator’s limited decision time and incomplete knowl-
edge of the automation’s design rule. We consider that the
performance of the human changes with task load wt [3]
and fatigue state Ft [2]. The classification performance of the
human is characterized by their true positive Ph

tp(Ft, wt) and
false positive Ph

fp(Ft, wt) probabilities, which represent the
likelihood of correct and incorrect positive class predictions.
These probabilities can be derived from an observation and
decision-making model for the human [3], or more conve-
niently can be estimated through calibration experiments.

An example of operator performance model is

Ph
tp(f, w) = max (1− (αtpf + βtpw) , 0) ,

Ph
fp(f, w) = min (αfpf + βfpw, 1) ,

(2)

with probabilities piecewise linear in the fatigue level f
and task load w. Here (αtp , αfp) and (βtp , βfp) are positive
constants capturing the influence of fatigue and task load.

C. Observation Model of the Automation
We assume that the automation knows its observation

model, i.e., the distribution P a of its observations given H0

and H1. Then the joint probability of its observations is

P(Y a
t,1:K) =

∏
k∈[K]

∑
i∈{0,1}

πiP
a(Y a

t,k | Ht,k = Hi).

As an example, consider the following model where the
observations of the automation follow Gaussian distributions

under H0, Y a
t,k ∼ N (0, σ2

a),

under H1, Y a
t,k ∼ N (d0, σ

2
a),

where the means 0, d0 > 0 and variance σ2
a are known.



D. Cost and Performance

Let Dt,k ∈ {H0,H1} be the final classification decision
made either by the human or the automation for task k at
time t. Let C(D,H) denote the cost associated with the
classification decision D for a task in true state H . We define

ctp := C(H1,H1), cfp := C(H1,H0),

ctn := C(H0,H0), cfn := C(H0,H1).

In addition, the system may incur a cost cr for each task
referred to the human. After the automation observes the entire
batch of tasks Y a

t at time t, the total expected cost from the
point of view of the automation depends on the vector of
posterior beliefs pat,1:K with components given by

pai,t,k = P(Ht,k = Hi | Y a
t,k), i ∈ {0, 1}, k ∈ [K], t ∈ [T ].

(3)
Therefore, if the automation decides to refer the set Nt ⊆

[K] and makes a classification decision Dt,k on tasks k ∈
[K] \ Nt and the human makes a classification decision Dt,n

on tasks n ∈ Nt referred to them, the expected per-step
classification cost incurred by the system is given by

c̃t(Ft, Y
a
t ,Nt, Dt,1:K) =

∑
k∈[K]\Nt

∑
i∈{0,1}

pai,t,kC(Dt,k,Hi)

+|Nt|cr +
∑
n∈Nt

∑
i∈{0,1}

pai,t,nC(Dt,n,Hi). (4)

For tasks k ∈ [K]\Nt that are classified by the automation,
it selects decisions Dt,k to minimize the expected cost given
by the first term of (4), which can be rewritten as

Ca(Y a
t,k) := min{C0(Y

a
t,k), C1(Y

a
t,k)}

where

C0(Y
a
t,k) = (1− pa1,t,k)ctn + pa1,t,kcfn (for Dt,k = H0),

C1(Y
a
t,k) = (1− pa1,t,k)cfp + pa1,t,kctp (for Dt,k = H1).

For tasks n ∈ Nt, referred to the human at time t, the
automation does not know the final decisions of the human
{Dt,n}n∈Nt , and forms a posterior belief on them. Therefore,
the expectation of (4) averaged over the decisions of the human
can be written as

ct(Ft, Y
a
t ,Nt)

=
∑

k∈[K]\Nt

Ca(Y a
t,k) + |Nt|cr +

∑
n∈Nt

Γ(Ft, Y
a
t,n, |Nt|), (5)

where

Γ(Ft, Y
a
t,n, |Nt|)

= (1− pa1,t,n)
[
Ph
fp(Ft, |Nt|)cfp + (1− Ph

fp(Ft, |Nt|))ctn
]

+ pa1,t,n

[
Ph
tp(Ft, |Nt|)ctp + (1− Ph

tp(Ft, |Nt|))cfn
]
.

E. Optimization Problem
The automation’s decision-making problem is formulated as

an MDP as follows. The set of states of the MDP is F ×Ya
K ,

where Ya
K := (Ya)

K , and the state at time t is (Ft, Y
a
t ). The

set of actions is all the subsets of [K] and the action at time t is
Nt. At time t, the system incurs a cost ct(Ft, Y

a
t ,Nt) given

by (5). Given a finite horizon T , we aim to find a control
policy g = (g1, . . . , gT ), where gt is a control law that selects
the action Nt as a function of Ft and Y a

t , to minimize the
expected total cost

J(g) = E

[
T∑

t=1

ct(Ft, Y
a
t , gt(Ft, Y

a
t ))

]
.

III. DYNAMIC PROGRAMMING DECOMPOSITION

The optimization problem above can be solved using dy-
namic programming over a finite horizon to determine the
value functions, {Vt}T+1

t=1 , where the value function Vt : (F ×
Ya) → R represents the minimum expected cumulative cost
achievable from time t onward by following the optimal policy.
The value functions can be obtained recursively, from T + 1
backwards, as follows: for t = T + 1 and all f ∈ F and
ya ∈ Ya

K , initialize VT+1(f, y
a) = 0. Then, for t ∈ [T ],

f ∈ F , and ya ∈ Ya
K , recursively define

Qt(f, y
a, n) = ct(f, y

a, n)

+ E
[
Vt+1(Ft+1, Y

a
t+1)

∣∣∣ Ft = f,Nt = n
]

(6)

and Vt(f, y
a) = min

n⊆[K]
Qt(f, y

a, n). (7)

Note that in (6), we do not condition on Y a
t = ya because the

observations are independent across time.
Then, a policy g = (g1, . . . , gT ) is optimal if and only if

for all t ∈ [T ] it satisfies

gt(f, y
a) ∈ argmin

n⊆[K]

Qt(f, y
a, n), ∀f ∈ F , ya ∈ Ya

K . (8)

There are three computational challenges associated with
solving the above dynamic program. At each stage: (i) we need
to compute the function Qt for all values of ya in Ya

K ; (ii) we
need to take expectations over Y a

t+1 which lies in Ya
K ; and we

need to minimize Qt over all possible subsets of [K]. We now
present three simplifications to circumvent these computational
challenges. First, we use the ideas from [3] and consider the
subproblem of optimizing over all possible task loads at each
time. Second, we simplify the dynamic program by treating
the fatigue state Ft as a post-decision state. And, finally, we
present an ADP where the expectation over Y a

t+1 is computed
via Monte Carlo approximation.

A. Reduction to a Task Load Optimization Problem
The cost function given by (5) can be rewritten as

ct(Ft, Y
a
t ,Nt) =

∑
k∈[K]

Ca(Y a
t,k)−

∑
n∈Nt

R(Y a
t,n, Ft, |Nt|),

(9)
where R(Y a

t,n, Ft, |Nt|) denote the referral indices, given by

R(Y a
t,n, Ft, |Nt|) = Ca(Y a

t,n)− Γ(Ft, Y
a
t,n, |Nt|)− cr. (10)



Only the second term in (9) depends on Nt. Therefore, for
a fixed value of |Nt|, ct(Ft, Y

a
t ,Nt) is minimized when Nt

is chosen to maximize
∑

n∈Nt
R(Y a

t,n, Ft, |Nt|), i.e., the cost
reduction when referring tasks Nt to the human. Therefore,
similarly to [3, Lemma 1], we get the following result.

Proposition 1. For a given task load |Nt| = w at time t, the
instantaneous cost (9) is minimized by referring the w tasks
with the highest referral indices.

For a fixed value of |Nt|, let c∗t (Ft, Y
a
t , |Nt|) denote the

minimum cost,

c∗t (Ft, Y
a
t , |Nt|) =

min
Nt:|Nt|=w

∑
k∈[K]

Ca(Y a
t,k)−

∑
n∈Nt

R(Y a
t,n, Ft, |Nt|). (11)

Note that this cost can be computed efficiently by following
Proposition 1. Since the fatigue dynamics (1) depends only
on |Nt|, we can rewrite the recursive step (6) and (7) of the
dynamic program as follows: for t ∈ [T ], f ∈ F , and ya ∈
Ya
K ,

Vt(f, y
a) = min

0≤w≤K

{
c∗t (f, y

a, w)

+ E[Vt+1(Ft+1, Y
a
t+1) | Ft = f, |Nt| = w]

}
. (12)

B. Simplified Value function in Terms of the Fatigue State
For further computational efficiency, we exploit the fact that

the observations Y a
t are independent across time. For this,

define the simplified value function {V̄t}T+1
t=1 , V̄t : F → R, in

terms of the fatigue state as V̄t(f) = E[Vt(f, Y
a
t )]. It satisfies

V̄T+1(f) = 0 for all f ∈ F , and for t ∈ [T ] and f ∈ F and
t ∈ [T ]

V̄t(f) = E
[

min
0≤w≤K

{
c∗(f, Y a

t , w)

+ E
[
V̄t+1(Ft+1) | Ft = f, |Nt| = w

]}]
. (13)

Computing {Vt}T+1
t=1 using the dynamic program (7) suffers

from the curse of dimensionality because |Ya
K | = |Ya|K .

However, with the simplified value function {V̄t}T+1
t=1 , storing

the values for all f ∈ F suffices.

C. Monte Carlo Approximation of the Expectation over
Observations

To compute the simplified value function using (13) in
practice, we approximate the expectation with respect to Y a

t

using Monte Carlo samples. For M a large integer defining

the number of Monte Carlo samples, let
{ ̂̄Vt

(M)}T+1

t=1
be an

approximation of {V̄t}T+1
t=1 , defined recursively as follows. For

all f ∈ F , ̂̄V (M)

T+1(f) = 0. Then, for all time t ∈ [T ],

̂̄V (M)

t (f) =
1

M

M∑
m=1

[
min

0≤w≤K

[
c∗t (f, y

a,(m), w)

+ E
[ ̂̄V (M)

t+1 (Ft+1) | Ft = f, w
]]]

, (14)

where {ya,(m)}Mm=1 are i.i.d. samples of Y a
t . We next show

that this randomized approximation converges to the desired
value function V̄t, at least under some technical assumption
on the state-space F .

Theorem 1. Assume F is countable. For all time t ∈ [T +1],

almost surely the sequence ̂̄Vt

(M)
converges to V̄t pointwise,

i.e., P
(
∀f ∈ F , limM→∞

̂̄Vt

(M)
(f) = V̄t(f)

)
= 1.

Proof. We proceed by backward induction. The result is
trivially true at time T + 1. Suppose now that it is true at
some time index t+1, we want to show that it is also true at
time index t.

Let Ω be the underlying abstract sample space, and Ω1 ⊂ Ω

be a set of probability 1 over which ̂̄V (M)

t+1 converges pointwise

to V̄t+1 as M → ∞. Since the (random) functions ̂̄V (M)

t+1 are
uniformly bounded (e.g., by T × max(cfp , cfn , ctp , ctn)), by
the dominated convergence theorem we have, for any f ∈ F ,
w ∈ {0, . . . ,K}, and for any ω ∈ Ω1,

Eη

[ ̂̄V (M)

t+1 (ϕt(f, w, η))

]
−−−−→
M→∞

Eη

[
V̄t+1(ϕt(f, w, η))

]
.

(15)
Define now, for all f ∈ F , y ∈ Ya

K , w ∈ {0, . . . ,K},

Q̄
(M)
t (f, y, w) = c∗t (f, y, w) + Eη

[ ̂̄V (M)

t+1 (ϕt(f, w, η))

]
,

Q̄t(f, y, w) = c∗t (f, y, w) + Eη

[
V̄t+1(ϕt(f, w, η))

]
,

and note that from (12)

min
0≤w≤K

Q̄t(f, y, w) = Vt(f, y),

so E
[

min
0≤w≤K

Q̄t(f, Y
a
t , w)

]
= V̄t(f).

Let f ∈ F . Let ϵ > 0. By (15), there exists some integer M0

such that for all M ≥ M0, we can show that for all y ∈ Ya,
for all ω ∈ Ω1,∣∣∣∣ min

0≤w≤K
Q̄

(M)
t (f, y, w)− min

0≤w≤K
Q̄t(f, y, w)

∣∣∣∣ ≤ ϵ.

Hence, for all ω ∈ Ω1, for all M ≥ M0,∣∣∣∣E [
min

0≤w≤K
Q̄

(M)
t (f, Y a

t , w)

]
− V̄t(f)

∣∣∣∣ ≤ ϵ. (16)

Now, note from (14) that

̂̄V (M)

t (f) =
1

M

M∑
m=1

min
0≤w≤K

Q̄
(M)
t (f, Y a

t , w).

By the strong law of large numbers, for all ω ∈ Ω1 \ Nf ,
where Nf has probability 0 (and can depend on f ), there
exists M1 ≥ M0, such that for all M ≥ M1∣∣∣∣ ̂̄V (M)

t (f)− E
[

min
0≤w≤K

Q̄
(M)
t (f, Y a

t , w)

]∣∣∣∣ ≤ ϵ. (17)

Combining (16) and (17), we get that ̂̄V (M)

t (f) → V̄t(f) as
M → ∞, for all ω ∈ Ω1 \Nf .

Using this argument for any f ∈ F , we see that ̂̄V (M)

t

converges pointwise to V̄t for all ω ∈ Ω1 \ (∪f∈FNf ). This



set is still of probability 1 because F is assumed countable.
This completes the induction step and the proof.

Note that the convergence result of Theorem 1 may be
true under more general assumptions on the space F , for a
more general discussion on convergence, refer to the work on
empirical dynamic programming in [20].

As was the case for V̄t, the main advantage of ̂̄V (M)

t is that
we do not need to pre-compute the optimal for all ya ∈ Ya

k .
For the specific realization of ya ∈ Ya

k observed at time t, we
can compute an approximation V̂

(M)
t of V̂t as follows:

V̂
(M)
t (f, ya) = min

0≤w≤K

[
c∗t (f, y

a, w)

+ E[ ̂̄V (M)

t+1 (Ft+1) | Ft = f, |Nt| = w]
]
.

Consequently we can compute an approximately optimal pol-
icy ĝ

(M)
t as follows

ĝ
(M)
t (f, ya) ∈ argmin

0≤w≤K

[
c∗t (f, y

a, w)

+ E[ ̂̄V (M)

t+1 (Ft+1) | Ft = f, |Nt| = w]
]
.

Therefore our approximate dynamic program (ADP) consti-
tutes of recursively computing the approximate value function
V̂

(M)
t and obtaining an approximately optimal policy ĝ

(M)
t .

IV. SIMULATION RESULTS

We now present simulation results for our ADP method,
where we optimize the decision referral policy considering
fatigue dynamics. For our numerical experiments, we use T =
10, K = 20, M = 1000 samples, π = [0.5, 0.5], ctp = ctn =
0, cfp = cfn = 1, cr = 0. We use the models from Section II-
A, Section II-B with parameters (αtp , αfp) = (0.087, 0.1) and
(βtp , βfp) = (0.043, 0.033), and Section II-C with (d0, σa) =
(3, 2.3). We compare the ADP solution with the algorithm
proposed in [3], which follows a myopic policy that optimizes
only the immediate cost at each time step, as described in
Proposition 1. This approach does not account for the impact
of actions on future fatigue levels, as it does not consider any
model of fatigue dynamics.

A. Comparison of the Mean Cumulative Cost
We run Monte Carlo simulations over 1000 independent

sample paths to evaluate the performance of the policy ob-
tained by ADP algorithm and the algorithm in [3] as a function
of the horizon, starting with initial state F1 = 0.

The mean cumulative performance as a function of hori-
zon is shown in Figure 1. For a short horizon, these mean
cumulative costs are roughly the same. However, as the time
horizon increases, the ADP algorithm provides significant cost
improvements.

To understand the difference in performance of the two
algorithms, in Figure 2, we compare the cost incurred by the
automation, cost incurred by the human, and the total cost for
the horizon T . The plots show that ADP provides significantly
lower cost for the human and only marginally higher cost
for the automation, helping the fatigue-aware decision referral
policy achieve better overall team performance.

B. Comparison of Sample Path Behaviors

To understand the behavioral difference between the two
algorithms, in Figures 3 and 4 we compare their sample path
behavior for a single realization starting at low (F1 = 0) and
high (F1 = 2) initial fatigue states, respectively. Figure 3
shows that the ADP solution adjusts task load to maintain
fatigue at an appropriate level, preventing it from reaching the
absorbing state (Ft = 3) where recovery is not possible. In
contrast, the algorithm in [3] assigns higher task load, pushing
fatigue into the absorbing state. Figure 4 shows that with
high initial fatigue, ADP anticipates the increase in future
fatigue and reduces task load to allow for recovery, unlike
the algorithm in [3] which assigns task load based on current
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Fig. 1. Comparison of mean cumulative costs for different time
horizons, computed from 1000 simulations. The bands indicate one
standard deviation on each side.
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Fig. 2. Comparison of automation, human and total cost. The markers
“×” represent outlier values (i.e., outside of [Q1−1.5(Q3−Q1), Q3+
1.5(Q3 −Q1)] where Q1 and Q3 are the 25th and 75th percentiles).
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Fig. 3. A sample path of fatigue and taskload evolution with ADP and
algorithm in [3] for low initial fatigue state.
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Fig. 4. Fatigue and Taskload evolution with ADP and algorithm in [3] for
high initial fatigue state.



fatigue and risks reaching the absorbing high fatigue state,
failing to achieve recovery. We can see that in this example,
under the ADP policy fatigue builds up more slowly and the
automation assigns fewer tasks to the human operator.

C. Robustness to Model Uncertainty
In practice, the dynamics of the fatigue model would be

learned via calibration experiments. Therefore, it is important
to understand the robustness of the performance to uncertainty
in model dynamics. For that matter, we compute the ADP
policy for the nominal fatigue model of Section II-A and
evaluate it on different, randomly sampled models in an ε-
ball (ε = 0.05) around the nominal model. We sample five
such systems denoted by (System-1,. . . ,System-5) where for
each system we perturb each element Λi,j of the transition
matrix as Λ̃i,j = max(Λi,j + δ, 0)/

∑
j(max(Λi,j + δ, 0)),

where δ ∼ Unif(−ε, ε). We run Monte Carlo simulation
over 1000 sample paths to evaluate the performance of the
nominal policy on the five perturbed models and compare them
with performance of algorithm in [3], starting with initial state
F1 = 0. The results, shown in Figure 5, show that for all
the five perturbed systems, the ADP policy for the nominal
model consistently achieves lower total cost compared to the
algorithm in [3]. This suggests that the ADP policy shows
some level of robustness to errors in the identification of the
dynamic fatigue model.
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Fig. 5. Comparison of the performance of the ADP and the algorithm
in [3] for different perturbed fatigue models. The markers “×” represent
outlier values.

V. CONCLUSION

The evolution of cognitive fatigue and other mental states
impacts the performance of human-automation teams. In this
paper, we develop a strategy for decision referrals by an
automated system to a human operator, and show that by
taking fatigue dynamics into account, one can significantly
improve overall decision accuracy. Optimizing the decision
referral policy can be posed as a Markov decision process,
albeit with a very large state space accounting for all the
possible observations that the automation can make. Hence,
we introduce a significantly more efficient approximate dy-
namic programming (ADP) methodology, able to compute the
decision referral strategy for the specific observations made
at each period, rather than requiring to compute and store the
value function for all possible observations.

In this work, we assume that the automation is provided with
a model of fatigue dynamics. In practice, such a model can be

estimated using a combination of subjective, physiological and
task performance measurements, such as task completion time,
accuracy, etc. In future work, we aim to validate our approach
through experiments with human participants and estimate
such dynamic models from real-world data. Furthermore, we
plan to explore reinforcement learning approaches where the
automation learns a decision referral strategy by observing
fatigue state samples, and extend our methodology to multi-
class classification problems.
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