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Dynamic Estimation of Mental Workload and
Operator Accuracy for Time-Constrained Binary

Classification Tasks
Raihan Seraj, Aditya Mahajan and Jerome Le Ny

Abstract—Human cognitive states, such as mental workload,
play a pivotal role in decision making processes within human
automation teams. Although subjective measures of mental work-
load can be obtained using standard questionnaires like the
NASA-TLX, their administration is often impractical as it inter-
feres with the primary tasks of the human operator. Therefore,
it is of interest to estimate these subjective measures from less
intrusive observations. Evidence suggests that mental workload
is a dynamic process so incorporating historical measurements
could reduce its estimation error. Additionally, the estimation of
operator performance in human automation teams is essential
in optimizing task effectiveness and facilitating efficient resource
allocation. In this work, we consider a scenario where a human
and an automation solve binary classification tasks under time
constraints. We present and compare different dynamic schemes
to estimate the operator’s performance, i.e., classification accu-
racy, and her subjective ratings on subscales of the NASA-TLX
questionnaire, which measure mental workload across multiple
dimensions. These schemes differ in the information available
for estimation. We test these schemes on data collected from a
scenario where a human and an automation perform a series of
classification tasks for simulated mobile objects. Our analysis of
the interaction data and the estimation schemes indicates that
employing dynamic estimation for certain NASA-TLX subscale
ratings leads to decreased estimation errors.

Index Terms—Human Automation Interaction, Mental Work-
load, Human Performance.

I. INTRODUCTION

AUTONOMOUS systems are becoming pervasive and
impact applications in manufacturing, autonomous driv-

ing systems, disaster management, or healthcare. A crucial
element of these systems is the capacity of the human op-
erators to make sound decisions, which is inherently influ-
enced by cognitive factors such as mental workload (MW),
which cannot be directly observed in real-time but impacts
task efficiency, system effectiveness, and overall operational
outcomes. Maintaining an appropriate level of MW is critical,
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as insufficient MW can lead to disengagement and excessive
MW leads to heightened fatigue, both of which can deteriorate
performance in human-automation teams [1], [2]. Therefore,
assessing MW is essential for designing appropriate adaptive
automation interfaces [3], [4].

A frequent means of measuring MW is by collecting sub-
jective responses to standard questionnaires [5] such as the
NASA-TLX (Task Load Index) [6], which evaluates work-
load across multiple subscales, encompassing mental demand,
physical demand, temporal demand, performance, effort and
frustration. Although subjective ratings have a high face valid-
ity [5], collecting them is intrusive [7] and forces the operators
to disengage from their primary tasks. An alternative approach
to assess MW is to use passive measurements, combined with
certain task characteristics (e.g., task complexity, number of
subtasks, etc.). Passive measurements include i) physiological
measurements such as heart rate, galvanic skin response, etc.
[8]; and ii) operator performance metrics (OPMs) in primary
or secondary tasks, such as accuracy or error rates, response
times, etc. [9], [10].

MW models based on physiological measurements such as
electrocardiograms, event related potentials, electroencephalo-
grams and galvanic skin responses are studied in [11]–[13],
[13]–[15]. See [16] for a survey. MW models based on
OPMs in primary or secondary tasks include [17]–[21] and
use tools such as linear regression [17], petri nets [18], or
hidden Markov models [19]–[21]. Physiological measurements
often require costly sensors and controlled conditions, which
restricts their use [22]. Therefore, we use only OPMs as
passive measurements to assess mental workload.

For many tasks, we can identify certain primary OPMs of
importance (e.g., operator accuracy or error rates in a classi-
fication task), which could also be estimated using secondary
OPMs (operator response times, efficiency of the operator’s
interactions with the interface, etc.), task characteristics (com-
plexity, task load or intensity, etc.), and possibly past values of
primary and secondary OPMs. Indeed, there may be situations
where direct measurements of primary OPMs are unavailable,
e.g., for classification tasks where the ground truth is not
known. In such cases, identifying reliable indirect indicators
of performance becomes particularly important.

Given the intuitive correlation between MW and operator
performance [23], there is also an interest in leveraging
subjective MW measurements to estimate primary OPMs
and predict future changes in performance. Linear regression
models are developed in [24] to establish quantitative rela-
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tionships between a primary OPM (flight technical errors) and
NASA-TLX ratings of the performance, physical demand and
temporal demand subscales. However, because these ratings
were collected after each scenario where performance was
measured, this study is not targeted at real-time performance
estimation. In [25], a long short-term memory (LSTM) neural
network [26] processing the outputs of a multi-dimensional
workload assessment algorithm is used to predict operator
performance up to 5 minutes in the future on an aircraft
supervision task.

It is well established in the literature that cognitive states
such as MW are dynamic variables with temporal correla-
tions [21], [27]. The same holds true for some OPMs [28].
So, incorporating historical measurements of MW, primary
and secondary OPMs, and task characteristics in the estimation
models may help reduce estimation error. This dynamic aspect
of model estimation has not received sufficient attention in
the literature. A few studies use HMMs to estimate cognitive
models [19]–[21], but they do not compare with other dynamic
estimation techniques. Some mathematical models accounting
for the temporal correlation of MW utilize dynamic queue
formulations [29], [30], but these models are theoretical and
have not been verified experimentally. A related concern is that
collecting subjective ratings to questionnaires is an intrusive
process, so that it can only be performed infrequently, which
can result in increased estimation errors. Hence, the trade-off
between the frequency at which subjective MW measurements
are collected and estimation quality needs to be investigated.

II. RESEARCH QUESTIONS AND CONTRIBUTIONS

The previous discussion motivates the following research
questions:
Q1 Does including the history of passive measurements and

task characteristics help in reducing estimation error of
MW (question Q1a) and primary OPM (question Q1b)?

Q2 Does adding past subjective MW measurements to the
history of passive measurements and task characteristics
help in reducing estimation error of MW (question Q2a)
and primary OPM (question Q2b)?

Q3 How does the estimation error of MW (question Q3a)
or primary OPM (question Q3b) vary with the frequency
with which the operators are asked to provide subjective
MW measurements?

Q4 How does the estimation error of primary OPM vary
when past primary OPM measurements are not available?

Given the practical importance of the NASA-TLX subscale
ratings in assessing MW [24], [31], in this paper we equate
estimating MW with estimating these subjective ratings, as in
[24] for instance. The original NASA-TLX paper recommends
combining all the reported scores into a single score. Later
papers argue that such a combined score is not very meaning-
ful [32]. So we separately estimate each subscale ratings and
consider them as different facets of MW.

To address the research questions above, we consider
repeated binary classification tasks where human operators
interact with a simulated environment closely inspired by
the Simulated Combat Control System (SCCS) microworld

of [33], which has been used in previous research to explore
situation awareness and task performance within dynamic
decision-making settings relevant to command and control
operations. We design an experiment where the operators
observe the parameters of different aircraft and classify them
as hostile or non-hostile by following a pre-specified deci-
sion tree. They then answer the standard NASA-TLX [6]
questionnaire to provide subjective measurements of different
factors associated with their MW. For our experimental setup
we consider the following metrics: i) operator classification
accuracy (as primary OPM), ii) operator average classification
time (as secondary OPM), iii) number of tasks given to the
operator and the round in which the tasks are performed
(as task characteristics). Details of the experimental setup
and the metrics are presented in Section III. Based on the
interaction data obtained from human participants, we consider
the following estimation schemes to answer our research
questions (see also Table II for more details):

S1 Estimate MW (scheme S1a) or primary OPM (operator
classification accuracy, scheme S1b) based on the last
available values of primary and secondary OPM mea-
surements and task characteristics.

S2 Estimate MW (scheme S2a) or primary OPM (scheme
S2b) based on the history of primary and secondary
OPM measurements and task characteristics.

S3 Estimate MW (scheme S3a) or primary OPM (scheme
S3b) based on the history of primary and secondary
OPM measurements and task characteristics and the last
available NASA-TLX subscale ratings.

S4 Estimate MW (scheme S4a) and primary OPM (scheme
S4b) based on the history of primary and secondary
OPM measurements and task characteristics and the
history of NASA-TLX subscale ratings.

S5 Estimate MW (scheme S5a) and primary OPM (scheme
S5b) based on the history of primary and secondary
OPM measurements and task characteristics and a peri-
odic subset of the past NASA-TLX subscale ratings.

We also consider variations of S1b-S5b, denoted S1b’–
S5b’, where past measurements of primary OPM are not
available to estimate current primary OPM. Since we are not
aware of any existing study comparing the performance of
different estimators for predicting MW and OPM, we have
opted to evaluate multiple state-of-the-art estimators, and, for
each estimator, select the one with the best performance. This
is helpful to avoid the answers to our research questions to
depend on the performance of a specific estimator. We consider
and present in Section IV the following estimators for the
different schemes: i) random forest regressor ii) support vector
regressor iii) XGBoost regressor iv) recurrent neural network
with long short term memory (RNN-LSTM) v) Kalman fil-
tering on transformed data vi) non linear filtering with input-
output hidden Markov model (IO-HMM) vii) autoregressive
integrated moving average with exogenous input (ARIMAX)
on transformed data. We compare the root mean square error
(RMSE) (referred to as estimation error) across the different
schemes to answer the research questions Q1–Q4 described
above. Our findings are presented in Section V.
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The main contributions of our work are as follows:
• We present different dynamic estimators and illustrate

their utility in estimating operator MW (as measured by
different NASA-TLX subscale ratings), and estimating
primary OPM (as measured by classification accuracy).

• We analyze and statistically verify (based on the collected
data and best performing estimator) whether including
the history of primary and secondary OPM measurements
and task characteristics along with the history of NASA-
TLX subscale ratings reduces the estimation error for the
estimation of MW and primary OPM.

• We show how the frequency at which we can obtain
NASA-TLX subscale ratings affects estimation errors
of MW and primary OPM, and outline strategies for
adjusting estimator inputs to address missing values.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

A. Description of the simulator

Fig. 1. The interface of SCCS microworld.

A between-subject experimental study was performed where
participants interacted with a simulator closely inspired by
the Simulated Combat Control System (SCCS) microworld
described in [33]. This simulation environment represents a
simplified naval anti-air warfare scenario. Participants play the
role of an operator and monitor parameters of different aircraft
appearing on a radar screen to classify them as hostile or non-
hostile, by following a provided decision tree.

The simulator interface, shown in Figure 1, consists of three
panels. The right panel shows a mock-up of a radar screen
with aircraft represented as white dots and their direction of
motion shown as a thin white line. The operator can select
an aircraft by clicking on the white dot. Each aircraft has
multiple parameters (origin, altitude, weapons, emissions, etc.)
as shown in the middle panel. The bottom of the middle panel
has two buttons to classify the selected aircraft as ‘Hostile’
or ‘Non-Hostile’. When an aircraft is classified as ‘Hostile’,
the color of its dot changes to red, when it is classified as
‘Non-Hostile’ the color of its dot changes to green. It is
possible to re-select a previously classified aircraft and change
its classification. The left panel shows a decision tree that the
operator is asked to follow to classify the aircraft as ‘Hostile’
or ‘Non-Hostile’. The top left corner of the radar screen
shows a timer displaying the time (in seconds) remaining in

the current round. Some additional details of the simulator,
including the decision tree and aircraft parameters are shown
in the supplementary material.

B. Description of the experiment

To minimize the learning effects [34], the participants
started with 3 practice rounds of 120 seconds each to become
familiar with the interface. The main experiment then con-
sisted of 25 rounds of 120 seconds each. The participants had
an option to take a break after every 5 rounds. To understand
the impact of taskload on MW, the participants were shown in
each round a subset of 30 aircraft, according to the following
schedule:1 a low tasload of 14 aircraft per round was shown in
rounds 1− 5, 11− 13, and 18− 20; a medium taskload of 18
aircraft per round was shown in rounds 6−10 and 23−25; and
a high taskload of 22 aircraft per round were shown in rounds
14− 17 and 21− 22. The remaining aircraft were not shown
on the screen and automatically classified by the automation.

The participants were asked to classify each aircraft with
the provided decision tree by starting from the top node and
traversing the tree using the values of the parameters of each
aircraft, until they reach a leaf node with the decision “Hostile”
or “Non-Hostile”. Participants were allowed to update their
classification decisions multiple times and only their last
classification decision was considered. At the end of each
round, aircraft that were shown to the participants but left
unclassified were randomly classified by the system with an
accuracy of 50%. The aircraft not shown on the screen were
classified by the automation using a different decision tree
with fewer parameters.

At the end of each round, the classification accuracy of
the participants and the automation were displayed on the
screen. Then, the participants were asked to provide their
subjective ratings on a scale of 1 to 7 for different subscales of
the NASA-TLX questionnaire (screenshots showing how the
classification information and questionnaire were displayed are
provided in the supplementary material). Ratings for the physi-
cal demand subscale of the standard NASA-TLX questionnaire
were not requested, as it is not relevant for the task.

C. Participants

A total of 26 participants (12 males, 14 females) with
age ranging from 21 to 33 (mean 24.54, standard deviation
3.148) participated in this study. The data from two partici-
pants whose subjective ratings remained constant throughout
the experiment was discarded. The participants were McGill
University students recruited using online advertising about the
research study and were compensated CAD 25 for participat-
ing. The experiment was conducted online and the participants
provided their consent before starting. The study was approved
by McGill University’s Research Ethics Board (REB).

1There was no task randomization, i.e., each participant saw the same
aircraft in the same order across the rounds.
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TABLE I
LOGGED DATA FOR THE OPERATOR.

Logged data Symbol Explanation

Taskload Nk |Ck|

Average
classification time τk

1

Nk

∑
i∈Ck

∑
j∈Ik

ti,jinterval

Operator classification
accuracy ACCk

∑
i∈Ck

1(ci
k
=gi

k
)

Nk
× 100

Operator ratings
for each subscale RESk

Operator ratings for each
NASA-TLX subscale,
on a scale of 1 to 7

D. Logged data

The simulator logs quantitative performance metrics. The
details are shown in Table I. For each participant, Ck de-
notes the set of aircraft assigned to the operator at round
k ∈ {1, . . . , 25}. Its cardinality |Ck| = Nk represents the
operator’s taskload at round k. For each aircraft i ∈ Ck, Ii

k

denotes the number of times aircraft i was classified. For
each j ∈ Ii

k, ti,jinterval := ti,jclassified − ti,jclicked denotes the time
between when the i-th aircraft was clicked for the j-th time
and when it was classified for the j-th time. Instances where
an aircraft was clicked but not classified are not counted.
For i ∈ Ck, gik ∈ {hostile, non-hostile} denotes the ground
truth for aircraft i and cik ∈ {hostile, non-hostile} denotes the
final classification decision for aircraft i. Recall that aircraft
not classified by the operator at the end of a round were
randomly classified. Finally, we use the notation RESk to refer
to any of the 5 NASA-TLX subscale ratings collected from
the operator at each round k (without differentiating in the
notation between subscales, to streamline the presentation).
Later, we also use the notation RESallk to refer to the vector
containing all 5 ratings collected at period k.

IV. METHODOLOGY

As discussed in Section II, we compare five classes of
estimation schemes S1–S5 to answer questions Q1–Q3. The
estimation schemes S1–S4 can be classified into two groups:

• Scheme S1 estimates MW or operator classification accu-
racy based only on the current observations. This estima-
tion problem can be formulated as a supervised regression
problem. Therefore, we use popular regression models,
in particular random forest, XGBoost, and support vector
regressors as estimators.

• Schemes S2, S3 and S4 estimate operator MW or operator
classification accuracy based on the history of observa-
tions. For this, we use two types of dynamic models:
(i) input-output models, where we use both regression
models, with a finite window of past observations serving
as features, and autoregressive integrated moving average
with exogenous input (ARIMAX) time-series models;
(ii) state-space models, where we use RNN-LSTM mod-
els, input-output hidden Markov models (IO-HMMs), and
Kalman filtering.

Scheme S5 is similar to scheme S4 but with missing mea-
surements. Some of the recursive filtering algorithms such as

𝑘 𝑁ℎ
𝑘 𝜏ℎ

𝑘 ACCℎ
𝑘 RESℎ

𝑘

R̂ESℎ
𝑘

ÂCCℎ
𝑘

Logged
data

Scheme S𝑖a

Scheme
S𝑖b or S𝑖b’

Round 𝑘

Fig. 2. Timing diagram showing when different variables are logged and
when different estimates are generated.

Kalman filtering and IO-HMMs are explicitly able to handle
missing observations. For others, including regression models,
RNN-LSTM, and ARIMAX, we replace the missing measure-
ment with the last observed value of the measurements.

A timing diagram showing when variables are logged and
when estimates are generated are shown in Fig. 2. We train
separate estimators for each estimated variable (NASA-TLX
subscale rating in Sia, estimating operator classification ac-
curacy in Sib and Sib’). For each estimator, we perform 4-
fold cross-validation on the dataset consisting of the logged
data of the 24 participants. We shuffle the data and divide
it into 4 folds, each fold consists of 6 participants (25% of
the participants). Then we run 4 iterations of training and
validation: in each iteration we train the estimator on three
folds and validate on the remaining fold. Recall that the
data from each participant is a time-series of 25 rounds. In
validation, we compute the root mean-squared error (RMSE)
given by

RMSE =

√∑25
k=1(yk − ŷk)

2

25
,

where yk and ŷk are the true and estimated values of the
estimated variable at round k. We collect the RMSE for the 6
participants in the testing-fold and do so for the four iterations
of cross-validation. Since each participant belongs to one fold,
we have 24 RMSE values at the end of this procedure, one for
each participant. For each estimator, we collect the summary
statistics (median and 25% and 75% quantiles) of RMSE.

We use RMSE as the performance metric because it has
the same units as the target variable, which makes it easier to
interpret. We use 4-fold cross-validation for its stability and
reduced noise sensitivity, limiting the risk of overfitting [35].
We now discuss the details of the different schemes.

A. Estimation schemes S1
We view each scheme S1 (i.e., S1a, S1b and S1b’) as

a supervised learning problem and consider three popular
regression models as estimators: i) random forest [36], i) XG-
Boost [37] and iii) support vector regressors [38], where we
train the regression models with the features (i.e., the input
variables or attributes of the data) and target values (i.e., the
output variable the model aims to estimate based on the input
features) described in Table II.

We use the standard implementation of these algorithms
from the scikit-learn python library [39]. Random forests and
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XGBoost are ensemble learning methods and we use 100 and
1000 estimators, respectively. For support vector regressors we
use rbf (radial basis functions) as the kernel parameter from
the scikit-learn library.

B. Estimation schemes S2
Schemes S2 (i.e., S2a, S2b and S2b’) estimate MW or oper-

ator classification accuracy based on a history of observations.
For this, we use the dynamic models described below.

1) Supervised learning with a finite window of past obser-
vations: The features and target values for schemes S2 when
viewed as a regression problem are shown in Table II. We
use the same three regression models as estimators and same
parameters as in Section IV-A. For each regression model,
we computed the average RMSE across the test set for each
window length w ∈ {1, . . . , 10} and chose the value of w with
the lowest average RMSE. Details of the choice of w for each
estimator are provided in the supplementary material.

2) ARIMAX: We model estimation of operator subscale rat-
ings of the NASA-TLX or operator classification accuracy as
a multivariate time series forecasting problem with exogenous
input. For a time series {xk}k≥1, we define the first-order
differencing operator ∆ as ∆xk = xk−xk−1, for k ≥ 1. Fur-
thermore for any d > 1, we define the d-th order differencing
operator ∆d as ∆dxk = ∆d−1xk − ∆d−1xk−1. For ease
of notation, we define ∆0xk = xk. An ARIMAX(p, q, s, d)
system is given by

∆dyk =

p∑
i=1

αi∆
dyk−i +

q∑
j=0

βjuk−j +

s∑
ℓ=1

γℓεk−ℓ,+εk + c

(1)
where {uk}k≥1 is the input sequence, {yk}k≥1 is the output
sequence, {εk}k≥1 is the error sequence, (p, q, s) is the model
order, d is the order of the differencing operator, and the offset
c and the coefficients {αi}pi=1, {βj}qj=0, {γℓ}sℓ=1 are real-
valued parameters to be learnt.

Because each input and output shown in Table II takes val-
ues within a finite interval, say [Vmin, Vmax], we first transform
these values using a non-linear function ϕ : [Vmin, Vmax] →
(−∞,∞). To simplify the notation, we use the same symbol ϕ
for all these transformations even though the range is different
for each variable. The functions ϕ and the ranges [Vmin, Vmax]
for the different variables are described in the supplementary
material. Then, for estimating the NASA-TLX subscale ratings
and operator classification accuracy, we consider the following
inputs and outputs for the model (1):

• yk = ϕ(RESk) and uk = vec(ϕ(k), ϕ(Nk), ϕ(τk),
ϕ(ACCk)) when estimating each NASA-TLX subscale
ratings with scheme S2a, where the operator vec stacks
all its components into a single vector. Since past values
of response to operator ratings are not available, we set
p = d = 0.

• yk = ϕ(ACCk) and uk = vec (ϕ(k), ϕ(Nk), ϕ(τk)) when
estimating operator classification accuracy with schemes
S2b and S2b’. For S2b’, we do not have access to past
values of primary OPM, so we set p = d = 0.

We use the Python library pmdarima [40] to select the
system order and the differencing order (in scheme S2b) and to

learn the system coefficients. We also use the library to make
estimations based on the inputs and the learned estimator.

3) RNN-LSTM: We consider a Recurrent Neural Network
with LSTM gates (RNN-LSTM) to estimate NASA-TLX sub-
scale ratings in S2a and operator classification accuracy in
S2b and S2b’. The set of features and target values used for
RNN-LSTM are shown in Table II.

An LSTM consists of memory cells that allows the network
to learn patterns over long sequences [26]. We use uk to denote
the input and yk to denote the output of the LSTM. We choose

• uk = vec (k,Nk,ACCk, τk) when estimating each
NASA-TLX subscale ratings with scheme S2a,

• uk = vec (k,Nk,ACCk−1, τk) when estimating operator
classification accuracy with scheme S2b.

• uk = vec (k,Nk, τk) when estimating operator classifi-
cation accuracy with scheme S2b’.

Our LSTM network consists of a single layer (as determined
through hyperparameter search) with ReLU activation func-
tion. The network parameters are optimized using the ADAM
optimizer [41]. The number of hidden states for each model as-
sociated with NASA-TLX subscale ratings and operator clas-
sification accuracy are chosen based on hyperparameter search
(performed separately for each subscale and each scheme) and
final chosen values are shown in the supplementary material.
Estimation with the trained RNN-LSTM network is performed
using the forward model given by

ŷk = σ(Why · hk + by),

where ŷk represents estimated operator classification accuracy
or NASA-TLX subscale ratings, σ is the activation function
(ReLU in our case), Why, by are the learned network param-
eters and hk is the hidden state.

4) Kalman filtering on transformed data: We model the
quantities to estimate as components of the output of a linear
state-space dynamical system, where the inputs are the current
round k and the operator taskload Nk and the outputs are
average classification time τk, operator classification accuracy
ACCk, and operator subscale ratings RESk.

We apply the same non-linear transformations ϕ : [v, v] →
(−∞,∞) as for ARIMAX to transform the inputs and outputs
of the linear model, and train a linear system of the form:

xk+1 = Axk +Buk +Gwk,

yk = Cxk +Duk + wk,

with state xk ∈ Rd, input uk = vec(ϕ(Nk), ϕ(k)), and

• yk = vec(ϕ(τk), ϕ(ACCk), ϕ(RESk) when estimating
each NASA-TLX subscale ratings with scheme S2a;

• yk = vec(ϕ(τk), ϕ(ACCk)) when estimating operator
classification accuracy with schemes S2b and S2b’.

The disturbance wk is assumed to be i.i.d. with zero mean
and covariance matrix Σ. The system matrices A, B, C, D,
G and covariance Σ are real-valued matrices of appropriate
dimensions, which are separately estimated for each subscale
rating using the n4sid algorithm [42] as implemented in the
Matlab system identification toolbox. The system order d is
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TABLE II
INFORMATION USED FOR THE DIFFERENT ESTIMATION SCHEMES. WE USE THE FOLLOWING SHORT FORMS: FW FOR FINITE WINDOW, RNN FOR

RNN-LSTM, HMM FOR IO-HMM, AND KF FOR KALMAN FILTER.FOR ARIMAX AND KF, A NON-LINEAR TRANSFORMATION (NOT SHOWN IN THE
TABLE FOR SIMPLICITY) IS PERFORMED BEFORE FITTING THE ESTIMATOR.

Estimator Variant a Variant b Variant b’
(estimate NASA-TLX subscale rating) (estimate operator accuracy) (estimate operator accuracy)

Scheme S1[
k,Nk, τk,ACCk

]
[k,Nk, τk,ACCk−1] [k,Nk, τk]

Scheme S2

FW, ARIMAX
[
k,Nk−w:k, τk−w:k,ACCk−w:k

] [
k,Nk−w:k , τk−w:k,ACCk−w:k−1

] [
k,Nk−w:k, τk−w:k

]
RNN, HMM, KF

[
k,N1:k, τ1:k,ACC1:k

] [
k,N1:k, τ1:k,ACC1:k−1

] [
k,N1:k, τ1:k

]
Scheme S3

FW

[
k,Nk−w:k, τk−w:k ,

ACCk−w:k,RESk−1

] [
k,Nk−w:k, τk−w:k,ACCk−w:k−1,RESallk−1

] [
k,Nk−w:k, τk−w:k,RESallk−1

]
ARIMAX Not used

[
k,Nk−w:k, τk−w:k,ACCk−w:k−1,RESallk−1

] [
k,Nk−w:k, τk−w:k,RESallk−1

]
Scheme S4

FW, ARIMAX

[
k,Nk−w:k , τk−w:k ,

ACCk−w:k , RESk−w:k−1

]
[
k,Nk−w:k , τk−w:k ,

ACCk−w:k−1,RESallk−w:k−1

] [
k,Nk−w:k, τk−w:k,RESallk−w:k−1

]
RNN, HMM, KF

[
k,N1:k , τ1:k , ACC1:k , RES1:k−1

] [
k,N1:k , τ1:k , ACC1:k−1, RESall1:k−1

] [
k,N1:k , τ1:k , RESall1:k−1

]

automatically chosen by the algorithm based on Hankel sin-
gular value decomposition. The system orders for the different
estimators are presented in the supplementary material.

Let zk denote the variable that we are interested in estimat-
ing, i.e., zk = ϕ(RESk) in S2a and zk = ϕ(ACCk) in S2b
and S2b’. In both cases, zk is an element of yk; let Cz and
Dz denote the corresponding rows of C and D. Only a subset
of the data is available for estimation, as shown in Table II.
For a generic scheme, we denote this data by data(k). The
estimate ẑk of zk is generated as

ẑk = Cz E[xk | data(k)] +Dzuk,

where the state estimate E[xk|data(k)] is recursively updated
using Kalman filtering [43].

5) Non-linear filtering based on IO-HMMs: We model
the quantities to estimate as components of the output of
an IO-HMM [44], where the inputs are the current round k
and the operator’s taskload Nk and the outputs are average
classification time τk, (quantized) operator classification ac-
curacy ⌊ACCk⌋, where ⌊·⌋ denotes the floor function, and
each NASA-TLX subscale ratings RESk. We assume that the
IO-HMM has a hidden discrete state xk ∈ {1, . . . H}, where
the integer H is the size of the state space, and consider the
following two transition kernels P and Q:

P (j | i, u) = Pr(xk+1 = j | xk = i, uk = u),

Q(y | i, u) = Pr(yk = y | xk = i, uk = u),

where uk = vec(Nk, k) is the input and

• yk=vec(τk, ⌊ACCk⌋,RESk) when estimating each
NASA-TLX subscale ratings with scheme S2a;

• yk = vec(τk, ⌊ACCk⌋) when estimating operator classi-
fication accuracy with schemes S2b and S2b’.

The kernels P and Q are learned using an extended ex-
pectation maximization (EM) algorithm [45]. We performed
a hyper-parameter search with different values of H , and
chose the value that has the lowest average RMSE score
averaged over the test experiment set. The number of hidden
states chosen for the estimation of operator classification
accuracy and NASA-TLX subscale ratings are provided in the
supplementary material.

As in the Kalman filter setting, let zk denote the variable
that we are interested in estimating, which is a component of
yk. Let Qz denote the corresponding marginalization of the
kernel Q, i.e.,

Qz(z|i, u) = Pr(zk = z|xk = i, uk = u).

Moreover, as in the Kalman filtering case, let data(k) denote
the data available at the time of estimation, as shown in
Table II. We then recursively update the belief

αk(i)
∆
= Pr(xk = i | data(k))

using the forward algorithm of [46], which is implemented in
Python. We then compute the MMSE (minimum mean squared
error) estimate of zk as

ẑk =
∑
z

z

H∑
i=1

αk(i)Qz(z | i, uk). (2)

C. Estimation schemes S3
Schemes S3 (i.e., S3a, S3b and S3b’) use the history of both

primary and secondary OPM measurements and task character-
istics along with the most recent value of NASA-TLX subscale
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ratings. When estimating operator classification accuracy, we
include as inputs all NASA-TLX subscale ratings, denoted by
RESallk . On the other hand, to estimate a given subscale rating
RESk we include as input this particular subscale rating only.
We consider the following schemes.

1) Supervised learning with a finite window of past obser-
vations: We follow the framework of Section IV-B1, with the
features and target values shown in Table II.

2) ARIMAX: We use ARIMAX only to estimate oper-
ator classification accuracy (schemes S3b and S3b’), fol-
lowing the framework of Section IV-B2. The inputs are
uk = vec(ϕ(k), ϕ(Nk), ϕ(τk), ϕ(RES

all
k−1)) and the outputs

are yk = ϕ(ACCk). For S3b’, we set p = d = 0 to exclude
past values of primary OPM measurements.

D. Estimation schemes S4

Compared to schemes S3, schemes S4 (i.e., S4a, S4b
and S4b’) add the history of NASA-TLX subscale ratings
when estimating both operator classification accuracy and next
operator subscale ratings.

1) Supervised learning with a finite window of past obser-
vations and RNN-LSTM: For these two schemes, we follow
the frameworks of Section IV-B1 and IV-B3 respectively, with
the features and target values shown in Table II.

2) ARIMAX: We follow the framework of Section IV-B2,
where we use the following inputs and outputs:

• uk = vec(ϕ(k), ϕ(Nk), ϕ(τk), ϕ(ACCk)) and yk =
ϕ(RESk) when estimating each NASA-TLX subscale
ratings with scheme S4a;

• uk = vec(ϕ(k), ϕ(Nk), ϕ(τk), ϕ(RES
all
k−1)) and yk =

ϕ(ACCk) when estimating operator classification accu-
racy with schemes S4b and S4b’. For scheme S4b’, we set
p = d = 0 to exclude past primary OPM measurements.

3) Kalman Filtering on transformed data: We use the same
modeling framework as presented in Section IV-B4, and learn
linear models with inputs uk = vec (ϕ(k), ϕ(Nk)) and outputs

• yk = vec (ϕ(τk), ϕ(ACCk), ϕ(RESk)) when estimating
each NASA-TLX subscale ratings with scheme S4a;

• yk = vec (ϕ(τk), ϕ(ACCk), ϕ(RES
all
k )), when estimating

operator classification accuracy (S4b and S4b’).

The estimation procedure is then exactly the same as
in Section IV-B4 where data(k) used for estimation is as
specified in Table II.

4) Non-linear filtering based on IO-HMMs: We use a
modeling framework for IO-HMM similar to the one presented
in Section IV-B and consider the following as the input and
output of the IO-HMM:

• uk = vec (Nk, k)
• yk = vec (τk, ⌊ACCk⌋,RESk) when estimating each

NASA-TLX subscale rating with scheme S4a.
• yk = vec (τk,RES

all
k , ⌊ACCk)⌋ when estimating opera-

tor classification accuracy with schemes S4b and S4b’.

The estimation procedure is then exactly the same as in Sec-
tion IV-B5 where data(k) used for estimation is as specified
in Table II.
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Fig. 3. Box plot comparing RMSE for the best estimators in schemes S1-S4
for (a) NASA-TLX subscale ratings and (b) operator classification accuracy.

E. Estimation Schemes S5

Scheme S5 (i.e., S5a, S5b, and S5b’) is similar to S4 except
that the NASA-TLX subscale ratings are available every tm
rounds, where tm is called the measurement interval. We
consider the same estimators as in S4. For finite window
regressors, ARIMAX, and RNN-LSTM we carry forward the
last observed values for the missing measurements during both
training and estimation. For Kalman filtering and IO-HMMs,
we use time-varying observation channels, i.e., the matrix C
in the case of Kalman filtering and the kernel Q in the case of
IO-HMMs change at different rounds k (for both training and
estimation) to capture the fact that RESk is available every
tm interval.

V. RESULTS

We use the following abbreviations to present our results.
SR-MD: Self reported mental demand, SR-TD: Self reported
temporal demand, SR-Perf: Self reported performance, SR-
Effort: Self reported effort, SR-Frust: Self reported frustration
and Obs-Acc: Operator classification accuracy.

For each scheme, the summary statistics of each estimator’s
RMSE are given in the supplementary material, where we
show the median and quantiles in the form median[q1, q3]
where q1 and q3 represents 25% and 75% quantiles of the
data respectively. For scheme S5, we only show the data
for three values of measurement interval: tm ∈ {3, 5, 8}. To
compare across schemes, we pick the estimator with the small-
est median as the representative estimator for each scheme.
The performance values of the representative estimators for
schemes S1–S4 are shown in Figure 3. Those for scheme S5
for different values of measurement interval tm are shown
in Figure 4, with the performance of S4 also shown for
comparison.

Figure 3(a) suggests that for estimating the NASA-TLX
subscale ratings in general the median RMSE of the different
schemes are in the order S4a ≤ S3a ≤ S2a ≤ S1a, 2 except for
the performance subscale, where all schemes perform roughly
the same. Figure 3(b) shows the box plot of RMSE values

2The notation Sia ≤ Sja means that scheme Sia performs better than
scheme Sja.
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TABLE III
p-VALUES FOR T-TESTS WHEN COMPARING BETWEEN SCHEMES S1-S4.
p-VALUES BELOW 0.1 ARE SHOWN IN BOLD, THOSE BELOW 0.01 ARE

ALSO UNDERLINED.

Scheme
comparison SR-MD SR-TD SR-Perf SR-Effort SR-Frust Obs-Acc

S2 < S1 0.038 0.075 0.491 0.083 0.314 0.459

S3 < S2 4.53× 10−6 1.4× 10−3 0.425 8.58× 10−5 8.6.× 10−4 0.305

S4 < S3 0.21 0.17 0.35 0.091 0.015 0.78

when operator classification accuracy is estimated using Sib
and Sib’ respectively where i ∈ {1, 2, 3, 4}. Figure 3(b)
suggests that for estimating operator classification accuracy,
the median RMSE values for all schemes S1b–S4b and S1b’–
S4b’ are roughly the same.

In the following, we answer the research questions posed
in Section II using the data shown on Figure 3 and Figure 4.
In addition, we perform a series of independent samples t-
tests [47]. Each test compares two schemes. We use the
notation Si < Sj to denote the t-test where the null hypothesis
is that the average RMSE of scheme Si is equal to that of
scheme Sj while the alternative hypothesis is that the average
RMSE of scheme Si is less than that of scheme Sj. The p-
values for the t-test when comparing between schemes S1–S4
are shown in Table III, where the more statistically significant
test results are outlined.

Similarly, when comparing between schemes Si and the
corresponding Si’ we use the notation Si < Si’ to denote
the t-test where the null hypothesis is that the average RMSE
of Si is equal to Si’ while the alternative hypothesis is that
the average RMSE of Si is less than Si’.

A. Answer to Q1

To answer Q1, we test S2 < S1. Figure 3 indicates that
incorporating the history of passive measurements and task
characteristics helps reduce the estimation error of SR-MD,
SR-TD and SR-Effort, with stronger statistical evidence that
this is the case for SR-MD (p-value 0.038). However, there
is insufficient evidence to support this conclusion for the
SR-Perf and SR-Frust NASA-TLX subscales or for operator
classification accuracy.

B. Answer to Q2

Question Q2 is answered by two tests: S3 < S2, for which
we have strong statistical evidence in the case of SR-MD,
SR-TD, SR-Effort, and SR-Frust; and S4 < S3, for which
we have statistical evidence for SR-Frust and, to a lesser
extent, for SR-Effort. Thus, we conclude that including the last
NASA-TLX subscale rating reduces the estimation error of
these ratings for mental demand, temporal demand, effort and
frustration. Moreover, including additional historical measure-
ments of NASA-TLX subscale ratings seems to help reduce
the estimation error of the effort and frustration subscale
ratings. However, there is insufficient evidence to support the
same conclusions for other NASA-TLX subscale ratings or for
operator classification accuracy.
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Fig. 4. Comparison of RMSE of schemes S4a and S5a. The median is shown
by solid lines and the interquantile range is shown by vertical error bars for
S4a and by a shaded region for S5a.

C. Answer to Q3

As reported in the last section, for Q2 we found insufficient
evidence to conclude that past measurements of NASA-TLX
subscale ratings help in estimating SR-Perf or Obs-Acc. So,
for Q3, we focus on the remaining NASA-TLX subscales: SR-
MD, SR-TD, SR-Effort, and SR-Frust. The RMSE of different
estimators for S5a for different values of the measurement
interval tm are shown in Fig. 4, where the RMSE for S4a is
also shown for comparison.

Figure 4 highlights the trade-off between the measurement
interval and RMSE. A smaller measurement interval implies
a smaller RMSE, but at the expense of the operator having
to answer the questionnaires more frequently, which could
distract from the primary task. A larger measurement interval
reduces the frequency of intrusive questionnaires but at the
expense of the larger RMSE. Figure 4 shows the exact trade-
off between performance and measurement interval, which can
be useful for choosing the value of tm in specific applications.
Given that each round in this experiment lasted two minutes,
the figure also sheds some light on the dynamics of MW (as
measured by the NASA-TLX) and the extent of its temporal
correlations, which can be exploited by dynamic estimators.

D. Answer to Q4

Q4 is answered by a series of tests Sib < Sib’ for
i ∈ {1, 2, 3, 4}. None of the tests are statistically significant
(p values are between 0.39 to 0.77, see supplementary ma-
terial). Therefore, we do not have evidence to conclude that
past observations of primary OPM measurements reduce the
RMSE (estimation error) for operator classification accuracy
in this experiment, once the secondary OPM measurements
and task characteristics are taken into account.
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VI. DISCUSSION

Our analysis shows that incorporating the last observed
NASA-TLX subscale ratings, the history of primary and
secondary OPM measurements and the task characteristics
improves the estimation of all NASA-TLX subscale ratings,
except for self-reported performance. Moreover, adding more
history of past NASA-TLX subscale ratings further helps
estimating the MW components captured by the effort and
frustration subscales of the NASA-TLX. Therefore, we have
evidence to support the dynamic nature of several components
of MW, and the usefulness of employing dynamic models for
their estimation.

On the other hand, we cannot conclude for our exper-
iment that past measurements of subscale ratings, primary
and secondary OPMs and task characteristics improve the
estimation of self-reported performance in the NASA-TLX
questionnaires, or of the actual operator classification accuracy.
This may be due to insufficient data, or more plausibly due
to specific features of our experiment. In separate analysis,
we have also tried to estimate operator accuracy at round k
using only the NASA-TLX subscale ratings collected at the
end of that round, but the estimation performance was worse
than by simply using the secondary OPM measurements
(average classification time) for the round, which moreover
are obtained more easily and earlier than subjective ratings.
Similar dissociation between MW and task performance has
been previously reported in the literature [48]–[51]. This
motivates the use of additional more objective measurements
to predict operator performance, such as secondary OPMs or
physiological measurements. In particular, for our experiment
a simple regression model as in Scheme S1b’ based on
secondary OPMs and task characteristics was sufficient to
estimate operator accuracy. In any case, further work is needed
to identify conditions under which MW or other cognitive
state assessments can help predict future operator performance,
given the interest in using such assessments to adjust the level
of automation dynamically.

Based on our analysis, we can make prescriptive recommen-
dations for choosing schemes when estimating an operator’s
MW (or, equivalently here, NASA-TLX subscale ratings). In
certain applications, obtaining direct subjective measurements
of MW is difficult because administering a questionnaire can
interfere with the operator’s task. In those cases, estimation of
MW can be performed by monitoring operator performance, as
in schemes S1a and S2a. In our experiment, we found evidence
that using dynamic estimators leveraging past performance
measurements can help improve MW estimates along several
dimensions. In applications where subjective measurements
can be obtained, we obtained strong evidence that using
the most recent of these measurements (in our experiment,
obtained two minutes prior at the end of the previous round)
is helpful to predict most dimensions of MW. However, the
benefits of leveraging additional past subjective measurements
were more limited. Furthermore, we evaluated through scheme
5a that the MW estimation performance steadily degrades,
within minutes, as the latest subjective measurements get
older. This sheds some light on the temporal dynamics of the

characteristics MW captured by the NASA-TLX questionnaire.

VII. CONCLUSION

In this paper, we studied dynamic estimation of operator
mental workload (MW), as measured by different subscales
of the NASA-TLX questionnaire, and operator classification
accuracy, using various estimation schemes. In our analysis,
using dynamic estimation led to significant reduction in es-
timation error for most NASA-TLX subscales; however, the
reduction in estimation error was limited for the NASA-TLX
self-reported performance subscale and for actual operator
classification accuracy, once the information contained in
secondary performance metrics and task characteristics was
taken into account.

In our current setup, the workload at each round was fixed
before the start of the experiment. An interesting and important
future direction is to evaluate dynamic adaptation of task load
based on estimated values of MW and operator performance
measurements.
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