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Dynamic Estimation of Mental Workload and
Operator Accuracy for Time-Constrained
Binary Classification Tasks

Raihan Seraj
Jerome Le Ny

Abstract—Human cognitive states, such as mental workload,
play a pivotal role in decision making processes within human
automation teams. Although subjective measures of mental work-
load can be obtained using standard questionnaires, such as the
NASA-TLX, their administration is often impractical as it inter-
feres with the primary tasks of the human operator. Therefore, it is
of interest to estimate these subjective measures from less intrusive
observations. Evidence suggests that mental workload is a dynamic
process so incorporating historical measurements could reduce its
estimation error. In addition, the estimation of operator perfor-
mance in human automation teams is essential in optimizing task
effectiveness and facilitating efficient resource allocation. In this
work, we consider a scenario where a human and an automation
solve binary classification tasks under time constraints. We present
and compare different dynamic schemes to estimate the operator’s
performance, i.e., classification accuracy, and its subjective ratings
on subscales of the NASA-TLX questionnaire, which measure men-
tal workload across multiple dimensions. These schemes differ in
the information available for estimation. We test these schemes on
data collected from a scenario, where a human and an automation
perform a series of classification tasks for simulated mobile objects.
Our analysis of the interaction data and the estimation schemes in-
dicates that employing dynamic estimation for certain NASA-TLX
subscale ratings leads to decreased estimation errors.

Index Terms—Human automation interaction, human perfor-
mance, mental workload.

1. INTRODUCTION

UTONOMOUS systems are becoming pervasive and
impact applications in manufacturing, autonomous
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driving systems, disaster management, or healthcare. A crucial
element of these systems is the capacity of the human operators
to make sound decisions, which is inherently influenced by cog-
nitive factors, such as mental workload (MW), which cannot be
directly observed in real-time but impacts task efficiency, system
effectiveness, and overall operational outcomes. Maintaining an
appropriate level of MW is critical, as insufficient MW can lead
to disengagement and excessive MW leads to heightened fatigue,
both of which can deteriorate performance in human-automation
teams [1], [2]. Therefore, assessing MW is essential for
designing appropriate adaptive automation interfaces [3], [4].

A frequent means of measuring MW is by collecting sub-
jective responses to standard questionnaires [5], such as the
NASA-TLX (Task Load Index) [6], which evaluates workload
across multiple subscales, encompassing mental demand, phys-
ical demand, temporal demand, performance, effort, and frus-
tration. Although subjective ratings have a high face validity [5],
collecting them is intrusive [7] and forces the operators to disen-
gage from their primary tasks. An alternative approach to assess
MW is to use passive measurements, combined with certain fask
characteristics (e.g., task complexity, number of subtasks, etc.).
Passive measurements include the follows: 1) physiological
measurements, such as heart rate, galvanic skin response, etc.
[8]; and 2) operator performance metrics (OPMs) in primary or
secondary tasks, such as accuracy or error rates, response times,
etc. [9], [10].

MW models based on physiological measurements, such as
electrocardiograms, event related potentials, electroencephalo-
grams, and galvanic skin responses, are studied in [11], [12],
[13], [14], and [15]. See [16] for a survey. MW models based
on OPMs in primary or secondary tasks include [17], [18], [19],
[20], and [21] and use tools, such as linear regression [17], petri
nets [18], or hidden Markov models [19], [20], [21]. Physiolog-
ical measurements often require costly sensors and controlled
conditions, which restricts their use [22]. Therefore, we use only
OPMs as passive measurements to assess mental workload.

For many tasks, we can identify certain primary OPMs
of importance (e.g., operator accuracy or error rates in a
classification task), which could also be estimated using
secondary OPMs (operator response times, efficiency of the
operator’s interactions with the interface, etc.), task charac-
teristics (complexity, task load or intensity, etc.), and possibly
past values of primary and secondary OPMs. Indeed, there may
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be situations, where direct measurements of primary OPMs
are unavailable, e.g., for classification tasks where the ground
truth is not known. In such cases, identifying reliable indirect
indicators of performance becomes particularly important.

Given the intuitive correlation between MW and operator
performance [23], there is also an interest in leveraging subjec-
tive MW measurements to estimate primary OPMs and predict
future changes in performance. Linear regression models are
developed in [24] to establish quantitative relationships between
aprimary OPM (flight technical errors) and NASA-TLX ratings
of the performance, physical demand, and temporal demand
subscales. However, because these ratings were collected after
each scenario, where performance was measured, this study is
not targeted at real-time performance estimation. In [25], a long
short-term memory (LSTM) neural network [26] processing the
outputs of a multidimensional workload assessment algorithm
is used to predict operator performance up to five min in the
future on an aircraft supervision task.

Itis well established in the literature that cognitive states, such
as MW, are dynamic variables with temporal correlations [21],
[27]. The same holds true for some OPMs [28]. So, incorporating
historical measurements of MW, primary and secondary OPMs,
and task characteristics in the estimation models may help re-
duce estimation error. This dynamic aspect of model estimation
has not received sufficient attention in the literature. A few
studies use HMMs to estimate cognitive models [19], [20], [21],
but they do not compare with other dynamic estimation tech-
niques. Some mathematical models accounting for the temporal
correlation of MW utilize dynamic queue formulations [29],
[30], but these models are theoretical and have not been verified
experimentally. A related concern is that collecting subjective
ratings to questionnaires is an intrusive process, so that it can
only be performed infrequently, which can result in increased
estimation errors. Hence, the tradeoff between the frequency at
which subjective MW measurements are collected and estima-
tion quality needs to be investigated.

II. RESEARCH QUESTIONS AND CONTRIBUTIONS

The previous discussion motivates the following research
questions.

Q1 Does including the history of passive measurements and
task characteristics help in reducing estimation error of
MW (question Q1la) and primary OPM (question Q1b)?
Does adding past subjective MW measurements to the
history of passive measurements and task characteristics
help in reducing estimation error of MW (question Q2a)
and primary OPM (question Q2b)?

Q3 How does the estimation error of MW (question Q3a) or
primary OPM (question Q3b) vary with the frequency
with which the operators are asked to provide subjective
MW measurements?

How does the estimation error of primary OPM vary when
past primary OPM measurements are not available?

Given the practical importance of the NASA-TLX subscale
ratings in assessing MW [24], [31], in this article we equate es-
timating MW with estimating these subjective ratings, as in [24]

Q2

Q4

for instance. The original NASA-TLX paper recommends
combining all the reported scores into a single score. Later
papers argue that such a combined score is not very meaning-
ful [32]. So, we separately estimate each subscale ratings and
consider them as different facets of MW.

To address the research questions above, we consider repeated
binary classification tasks, where human operators interact with
a simulated environment closely inspired by the Simulated
Combat Control System (SCCS) microworld of [33], which
has been used in previous research to explore situation aware-
ness and task performance within dynamic decision-making
settings relevant to command and control operations. We design
an experiment, where the operators observe the parameters of
different aircraft and classify them as hostile or nonhostile by
following a prespecified decision tree. They, then, answer the
standard NASA-TLX [6] questionnaire to provide subjective
measurements of different factors associated with their MW.
For our experimental setup we consider the following met-
rics: 1) Operator classification accuracy (as primary OPM); 2)
operator average classification time (as secondary OPM); and
3) number of tasks given to the operator and the round in which
the tasks are performed (as task characteristics). Details of the
experimental setup and the metrics are presented in Section III.
Based on the interaction data obtained from human participants,
we consider the following estimation schemes to answer our
research questions (see also Table II for more details).

S1 Estimate MW (scheme Sla) or primary OPM (operator
classification accuracy, scheme S1b) based on the last
available values of primary and secondary OPM mea-
surements and task characteristics.

S2 Estimate MW (scheme S2a) or primary OPM (scheme
S2b) based on the history of primary and secondary OPM
measurements and task characteristics.

S3 Estimate MW (scheme S3a) or primary OPM (scheme
S3b) based on the history of primary and secondary
OPM measurements and task characteristics and the last
available NASA-TLX subscale ratings.

S4 Estimate MW (scheme S4a) and primary OPM (scheme
S4b) based on the history of primary and secondary OPM
measurements and task characteristics and the history of
NASA-TLX subscale ratings.

S5 Estimate MW (scheme S5a) and primary OPM (scheme
S5b) based on the history of primary and secondary OPM
measurements and task characteristics and a periodic
subset of the past NASA-TLX subscale ratings.

‘We also consider variations of S1b—S5b, denoted S1b’-S5b’,
where past measurements of primary OPM are not available to
estimate current primary OPM. Since we are not aware of any ex-
isting study comparing the performance of different estimators
for predicting MW and OPM, we have opted to evaluate multiple
state-of-the-art estimators, and, for each estimator, select the one
with the best performance. This is helpful to avoid the answers to
our research questions to depend on the performance of a specific
estimator. We consider and present in Section IV the following
estimators for the different schemes: 1) Random forest regressor;
2) support vector regressor; iii) XGBoost regressor; iv) recurrent
neural network with long short term memory (RNN-LSTM);
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Decision Rule

Fig. 1. Interface of Simulated Combat Control System (SCCS) microworld.

v) Kalman filtering on transformed data; vi) nonlinear filtering
with input—output hidden Markov model (I0-HMM); vii) au-
toregressive integrated moving average with exogenous input
(ARIMAX) on transformed data. We compare the root mean
square error (RMSE) (referred to as estimation error) across
the different schemes to answer the research questions Q1-Q4
described above. Our findings are presented in Section V.

The main contributions of our work are as follows.

1) We present different dynamic estimators and illustrate
their utility in estimating operator MW (as measured by
different NASA-TLX subscale ratings), and estimating
primary OPM (as measured by classification accuracy).

2) We analyze and statistically verify (based on the collected
data and best performing estimator) whether including the
history of primary and secondary OPM measurements and
task characteristics along with the history of NASA-TLX
subscale ratings reduces the estimation error for the esti-
mation of MW and primary OPM.

3) We show how the frequency at which we can obtain
NASA-TLX subscale ratings affects estimation errors of
MW and primary OPM, and outline strategies for adjusting
estimator inputs to address missing values.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

A. Description of the Simulator

A between-subject experimental study was performed, where
participants interacted with a simulator closely inspired by the
SCCS microworld described in [33]. This simulation environ-
ment represents a simplified naval antiair warfare scenario.
Participants play the role of an operator and monitor parameters
of different aircraft appearing on a radar screen to classify them
as hostile or nonhostile, by following a provided decision tree.

The simulator interface, shown in Fig. 1, consists of three
panels. The right panel shows a mock-up of a radar screen with
aircraft represented as white dots and their direction of motion
shown as a thin white line. The operator can select an aircraft by
clicking on the white dot. Each aircraft has multiple parameters
(origin, altitude, weapons, emissions, etc.) as shown in the
middle panel. The bottom of the middle panel has two buttons to
classify the selected aircraft as ‘hostile’ or ‘nonhostile’. When

an aircraft is classified as ‘hostile’, the color of its dot changes
to red, when it is classified as ‘nonhostile’ the color of its dot
changes to green. Itis possible to re-select a previously classified
aircraft and change its classification. The left panel shows a
decision tree that the operator is asked to follow to classify
the aircraft as ‘hostile’ or ‘nonhostile’. The top left corner of
the radar screen shows a timer displaying the time (in seconds)
remaining in the current round. Some additional details of the
simulator, including the decision tree and aircraft parameters are
shown in the supplementary material.

B. Description of the Experiment

To minimize the learning effects [34], the participants started
with 3 practice rounds of 120 s each to become familiar with
the interface. The main experiment then consisted of 25 rounds
of 120 s each. The participants had an option to take a break
after every five rounds. To understand the impact of taskload
on MW, the participants were shown in each round a subset of
30 aircraft, according to the following schedule:' a low tasload
of 14 aircraft per round was shown in rounds 1 — 5, 11 — 13,
and 18 — 20; a medium taskload of 18 aircraft per round was
shown in rounds 6 — 10 and 23 — 25; and a high taskload of
22 aircraft per round were shown in rounds 14 — 17 and 21 —
22. The remaining aircraft were not shown on the screen and
automatically classified by the automation.

The participants were asked to classify each aircraft with
the provided decision tree by starting from the top node and
traversing the tree using the values of the parameters of each
aircraft, until they reach a leaf node with the decision ‘hostile”
or “nonhostile”. Participants were allowed to update their classi-
fication decisions multiple times and only their last classification
decision was considered. At the end of each round, aircraft
that were shown to the participants but left unclassified were
randomly classified by the system with an accuracy of 50%
. The aircraft not shown on the screen were classified by the
automation using a different decision tree with fewer parameters.

At the end of each round, the classification accuracy of the
participants and the automation were displayed on the screen.
Then, the participants were asked to provide their subjective
ratings on a scale of 1-7 for different subscales of the NASA-
TLX questionnaire (screenshots showing how the classification
information and questionnaire were displayed are provided in
the supplementary material). Ratings for the physical demand
subscale of the standard NASA-TLX questionnaire were not
requested, as it is not relevant for the task.

C. PFarticipants

A total of 26 participants (12 males, 14 females) with age
ranging from 21 to 33 (mean 24.54, standard deviation 3.148)
participated in this study. The data from two participants whose
subjective ratings remained constant throughout the experiment
was discarded. The participants were McGill University students
recruited using online advertising about the research study and

I There was no task randomization, i.e., each participant saw the same aircraft
in the same order across the rounds.
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TABLE I
LOGGED DATA FOR THE OPERATOR

Logged data Symbol Explanation
Taskload Ny, |Cr|
Average 1 i,j
classification time Tk Ne Z Z Yinierval
i€C) JET),
e Sice, Vet —yi
Operat(?r clalsaﬁcauon ACC), i€Cy (¢}, =g},) % 100
accuracy Ny,
Operator ratings Operator ratings for each
P & RES;, NASA-TLX subscale,

for each subscale on a scale of 1 to 7

were compensated CAD 25 for participating. The experiment
was conducted online and the participants provided their consent
before starting. The study was approved by McGill University’s
Research Ethics Board (REB).

D. Logged Data

The simulator logs quantitative performance metrics. The
details are shown in Table I. For each participant, C, denotes the
set of aircraft assigned to the operator atround & € {1,...,25}.
Its cardinality |Ci| = N}, represents the operator’s taskload at
round k. For each aircrafti € Cy, I,i denotes the number of times
aircraft ¢ was classified. For each j € T, tfﬁférval = tiigssiﬁed —
teil oq denotes the time between when the ith aircraft was clicked
for the jth time and when it was classified for the jth time.
Instances, where an aircraft was clicked but not classified, are
not counted. For i € Cy, gi. € {hostile, nonhostile} denotes the
ground truth for aircraft i and ¢!, € {hostile, nonhostile} denotes
the final classification decision for aircraft i. Recall that aircraft
not classified by the operator at the end of a round were randomly
classified. Finally, we use the notation RESy, to refer to any of
the 5 NASA-TLX subscale ratings collected from the operator
at each round & (without differentiating in the notation between
subscales, to streamline the presentation). Later, we also use the
notation RES2! to refer to the vector containing all five ratings
collected at period k.

IV. METHODOLOGY

As discussed in Section II, we compare five classes of estima-
tion schemes S1-S5 to answer questions Q1-Q3. The estimation
schemes S1-S4 can be classified into two groups as follows.

1) Scheme S1 estimates MW or operator classification accu-
racy based only on the current observations. This estima-
tion problem can be formulated as a supervised regression
problem. Therefore, we use popular regression models,
in particular random forest, XGBoost, and support vector
regressors as estimators.

2) Schemes S2, S3, and S4 estimate operator MW or operator

classification accuracy based on the history of observa-
tions. For this, we use two types of dynamic models.
1) input—output models, where we use both regres-
sion models, with a finite window of past observations
serving as features, and ARIMAX time-series models;
ii) state-space models, where we use RNN-LSTM models,
10-HMMs, and Kalman filtering.

Logged | Kk NP7k Acc) RES]|
data I I

| 0 |

| RES, |

Scheme Sia T T
l ., l

Scheme : ACCy, :
Sib or Sib’ : :
N Round & Y

Fig.2. Timing diagram showing when different variables are logged and when
different estimates are generated.

Scheme S5 is similar to scheme S4 but with missing mea-
surements. Some of the recursive filtering algorithms such as
Kalman filtering and IO-HMMs are explicitly able to handle
missing observations. For others, including regression models,
RNN-LSTM, and ARIMAX, we replace the missing measure-
ment with the last observed value of the measurements.

A timing diagram showing when variables are logged and
when estimates are generated are shown in Fig. 2. We train
separate estimators for each estimated variable (NASA-TLX
subscale rating in Sia, estimating operator classification accu-
racy in Sib and S7b’). For each estimator, we perform four-fold
cross-validation on the dataset consisting of the logged data of
the 24 participants. We shuffle the data and divide it into four
folds, each fold consists of six participants (25% of the partici-
pants). Then, we run four iterations of training and validation: in
each iteration we train the estimator on three folds and validate
on the remaining fold. Recall that the data from each participant
is a time-series of 25 rounds. In validation, we compute the
RMSE given by

25

where ¥y and ¢ are the true and estimated values of the es-
timated variable at round &£. We collect the RMSE for the six
participants in the testing-fold and do so for the four iterations
of cross-validation. Since each participant belongs to one fold,
we have 24 RMSE values at the end of this procedure, one for
each participant. For each estimator, we collect the summary
statistics (median and 25% and 75% quantiles) of RMSE.

We use RMSE as the performance metric because it has
the same units as the target variable, which makes it easier to
interpret. We use four-fold cross-validation for its stability and
reduced noise sensitivity, limiting the risk of overfitting [35]. We
now discuss the details of the different schemes.

A. Estimation Schemes S1

We view each scheme S1 (i.e.,, Sla, S1b, and S1b’) as a
supervised learning problem and consider three popular regres-
sion models as estimators as follows: i) Random forest [36],
ii) XGBoost [37], and iii) support vector regressors [38], where
we train the regression models with the features (i.e., the input
variables or attributes of the data) and target values (i.e., the
output variable the model aims to estimate based on the input
features) described in Table II.
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TABLE II
INFORMATION USED FOR THE DIFFERENT ESTIMATION SCHEMES

Estimator Variant a Variant b Variant b’
(estimate NASA-TLX subscale rating) (estimate operator accuracy) (estimate operator accuracy)
Scheme S1
[k, Ni, 7, ACC| [k, N, T, ACCp_1] [k, Nk, 1]
Scheme S2
FW, ARIMAX [k, Ni—wiks Th—wik» ACCh_ ik ] [k, Nk—wiks Th—wiks ACCh_wik—1] [k, Nk—wik, Th—w:k ]
RNN, HMM, KF [k, Ny.x, 71., ACCy.] [k, N1k, T1:6, ACCrp—1] [k, N1k, 71k
Scheme S3
[k, Nk —wiks Th—wiks all all
Fw [kakfw:kakaw:kaAcckfw:kflyRESkfl] [kv Nkfw:kkafw:k:RESkfl]
ACCkfw:]mRESkfl}
ARIMAX Not used [k, Nic—w:ks Th—wikes ACCk—wik—1, RESFL ] [k Nk—wike, Tk, RESEL ]
Scheme S4
[k, Nk—wiks Th—wiks [k, Nk—wiks Th—wsks -
FW, ARIMAX [k, Nk—wikes To—wie, RESZL 1]

ACCpr—wik» RESk—wik—1]

RNN, HMM, KF [k, Ny.k, 1.5, ACCyig, RES1:-1]

ACCh—yip—1, RESZL 1]

[k, N1i» Tk ACCrip—1, RESTS ]

[kv N1k, T1ks RES?lL,J

We use the following short forms: FW for finite window, RNN for RNN-LSTM, HMM for I0-HMM, and KF for Kalman filter.For ARIMAX and KF, a non-linear transformation (not shown in the

table for simplicity) is performed before fitting the estimator.

We use the standard implementation of these algorithms from
the Scikit-learn python library [39]. Random forests and XG-
Boost are ensemble learning methods and we use 100 and 1000
estimators, respectively. For support vector regressors we use
rbf (radial basis functions) as the kernel parameter from the
Scikit-learn library.

B. Estimation Schemes S2

Schemes S2 (i.e., S2a, S2b, and S2b’) estimate MW or oper-
ator classification accuracy based on a history of observations.
For this, we use the dynamic models described as follows.

1) Supervised Learning With a Finite Window of Past Obser-
vations: The features and target values for schemes S2 when
viewed as a regression problem are shown in Table II. We
use the same three regression models as estimators and same
parameters as in Section IV-A. For each regression model, we
computed the average RMSE across the test set for each window
lengthw € {1,...,10} and chose the value of w with the lowest
average RMSE. Details of the choice of w for each estimator are
provided in the supplementary material.

2) ARIMAX: We model estimation of operator subscale rat-
ings of the NASA-TLX or operator classification accuracy as
a multivariate time series forecasting problem with exogenous
input. For a time series {xy };>1, we define the first-order dif-
ferencing operator A as Axy, = xy — xj_1, for k > 1. Further-
more forany d > 1, we define the dth order differencing operator
A% as Ay, = AT 1z, — A% 1. For ease of notation, we
define A%z, = x;. An ARIMAX(p, q, 5, d) system is given by

p q s
Ay = iy i+ Bjukj+ Y ek o, +ek ¢

i=1 §=0 (=1
(1)

where {uy}r>1 is the input sequence, {yj}r>1 is the output
sequence, {€j, }x>1 is the error sequence, (p, ¢, s) is the model
order, d is the order of the differencing operator, and the offset ¢
and the coefficients {c; }_;, {3;}_, {7¢}{=, are real-valued
parameters to be learnt.

Because each input and output shown in Table II takes values
within a finite interval, say [Vinin, Vinax|,» we first transform
these values using a nonlinear function ¢ : [Vinin, Vinax] —
(—00,00). To simplify the notation, we use the same symbol
¢ for all these transformations even though the range is different
for each variable. The functions ¢ and the ranges [Vinin, Vinax)
for the different variables are described in the supplementary
material. Then, for estimating the NASA-TLX subscale ratings
and operator classification accuracy, we consider the following
inputs and outputs for the model (1).

D) yi = (RES,)  and = vec(9(k), o(Ne), (7).
»(ACCy)) when estimating each NASA-TLX subscale
ratings with scheme S2a, where the operator vec stacks
all its components into a single vector. Since past values
of response to operator ratings are not available, we set
p=d=0.

2) yk = ¢(ACCy) and uy, = vec (¢(k), (Ng), ¢(7%)) when
estimating operator classification accuracy with schemes
S2b and S2b’. For S2b’, we do not have access to past
values of primary OPM, so we set p = d = 0.

We use the Python library pmdarima [40] to select the system
order and the differencing order (in scheme S2b) and to learn the
system coefficients. We also use the library to make estimations
based on the inputs and the learned estimator.

3) RNN-LSTM: We consider a RNN-LSTM gates to estimate
NASA-TLX subscale ratings in S2a and operator classification
accuracy in S2b and S2b’. The set of features and target values
used for RNN-LSTM are shown in Table II.
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An LSTM consists of memory cells that allows the network
to learn patterns over long sequences [26]. We use uy, to denote
the input and yy, to denote the output of the LSTM. We choose

1) ug = vec (k, Ny, ACCg,7x) when estimating each

NASA-TLX subscale ratings with scheme S2a.

2) wug = vec (k, Ny, ACCy_1, 7 ) when estimating operator

classification accuracy with scheme S2b.

3) uy = vec (k, Nj, 7;) when estimating operator classifica-

tion accuracy with scheme S2b’.

Our LSTM network consists of a single layer (as determined
through hyperparameter search) with ReLU activation func-
tion. The network parameters are optimized using the ADAM
optimizer [41]. The number of hidden states for each model
associated with NASA-TLX subscale ratings and operator clas-
sification accuracy are chosen based on hyperparameter search
(performed separately for each subscale and each scheme) and
final chosen values are shown in the supplementary material.
Estimation with the trained RNN-LSTM network is performed
using the forward model given by

Uk = 0(Why - by + by)

where 7, represents estimated operator classification accuracy
or NASA-TLX subscale ratings, o is the activation function
(ReLU in our case), W, b, are the learned network parameters,
and hy, is the hidden state.

4) Kalman Filtering on Transformed Data: We model the
quantities to estimate as components of the output of a linear
state-space dynamical system, where the inputs are the current
round k and the operator taskload Ny, and the outputs are average
classification time 7y, operator classification accuracy ACCy,
and operator subscale ratings RESy.

We apply the same nonlinear transformations ¢ : [v, 7] —
(—00,00) as for ARIMAX to transform the inputs and outputs
of the linear model, and train a linear system of the form

Tpy1 = Axy, + Buy + Gwy,
yr = Cxp + Duy + wy,

with state ;, € R%, input uy, = vec(p(Ny), ¢(k)), and

1) yr = vec(od(1x), 9(ACCy), d(RESy) when estimating

each NASA-TLX subscale ratings with scheme S2a;

2) yi = vec(é(7k), 9(ACC)) when estimating operator

classification accuracy with schemes S2b and S2b’.

The disturbance wy, is assumed to be i.i.d. with zero mean
and covariance matrix . The system matrices A, B, C, D,
G and covariance Y are real-valued matrices of appropriate
dimensions, which are separately estimated for each subscale
rating using the n4dsid algorithm [42] as implemented in the
Matlab system identification toolbox. The system order d is
automatically chosen by the algorithm based on Hankel sin-
gular value decomposition. The system orders for the different
estimators are presented in the supplementary material.

Let z; denote the variable that we are interested in estimating,
i.e., 2z = ¢(RESy) in S2a and z;, = ¢(ACCy,) in S2b and S2b’.
In both cases, z; is an element of y; let C, and D, denote
the corresponding rows of C' and D. Only a subset of the data
is available for estimation, as shown in Table II. For a generic

scheme, we denote this data by data(k). The estimate 25, of z
is generated as

Zp = C, Elzy | data(k)] + D uy,

where the state estimate E[xzy|data(k)] is recursively updated
using Kalman filtering [43].

5) Nonlinear Filtering Based on 10-HMMs: We model the
quantities to estimate as components of the output of an IO-
HMM [44], where the inputs are the current round k& and the
operator’s taskload [V and the outputs are average classification
time 7, (quantized) operator classification accuracy |ACCy |,
where |-| denotes the floor function, and each NASA-TLX
subscale ratings RES;. We assume that the IO-HMM has a
hidden discrete state z, € {1,... H }, where the integer H is the
size of the state space, and consider the following two transition
kernels P and Q:

P(jli,u) =Pr(xesr =7 | xp =i, u = u)
Qy | i,u) =Pr(yr =y | xp =i, u, = u)
where uj, = vec(Ng, k) is the input and
1) yp = vec(rg, |ACC],RES;) when estimating each
NASA-TLX subscale ratings with scheme S2a;

2) yj, = vec(7g, |ACCy ) when estimating operator classifi-

cation accuracy with schemes S2b and S2b’.

The kernels P and @ are learned using an extended ex-
pectation maximization (EM) algorithm [45]. We performed a
hyper-parameter search with different values of /7, and chose the
value that has the lowest average RMSE score averaged over the
test experiment set. The number of hidden states chosen for the
estimation of operator classification accuracy and NASA-TLX
subscale ratings are provided in the supplementary material.

As in the Kalman filter setting, let z;, denote the variable that
we are interested in estimating, which is a component of y;,. Let
Q. denote the corresponding marginalization of the kernel @,
ie.,

Q. (z]i,u) = Pr(zk = z|ag = i, ur, = u).
Moreover, as in the Kalman filtering case, let data(k) denote the

data available at the time of estimation, as shown in Table II.
We, then, recursively update the belief

ap(i) 2 Pr(zy = i | data(k))
using the forward algorithm of [46], which is implemented in

Python. We, then, compute the MMSE (minimum mean squared
error) estimate of z as

H
=) 2 Y o(i)Qx(z | i, u). 2)

z i=1

C. Estimation Schemes S3

Schemes S3 (i.e., S3a, S3b, and S3b’) use the history of both
primary and secondary OPM measurements and task character-
istics along with the most recent value of NASA-TLX subscale
ratings. When estimating operator classification accuracy, we
include as inputs all NASA-TLX subscale ratings, denoted by
RES?!. On the other hand, to estimate a given subscale rating
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RES;, we include as input this particular subscale rating only.
We consider the following schemes.

1) Supervised Learning With a Finite Window of Past Obser-
vations: We follow the framework of Section IV-B1, with the
features and target values shown in Table II.

2) ARIMAX: We use ARIMAX only to estimate opera-
tor classification accuracy (schemes S3b and S3b’), follow-
ing the framework of Section IV-B2. The inputs are uj =
vec(o(k), p(Ny), d(7), p(RESI! | )) and the outputs are y;, =
®(ACCy,). For S3b’, we set p = d = 0 to exclude past values of
primary OPM measurements.

D. Estimation Schemes S4

Compared to schemes S3, schemes S4 (i.e., S4a, S4b, and
S4b’) add the history of NASA-TLX subscale ratings when es-
timating both operator classification accuracy and next operator
subscale ratings.

1) Supervised Learning With a Finite Window of Past Obser-
vations and RNN-LSTM: For these two schemes, we follow the
frameworks of Sections IV-B1 and IV-B3, respectively, with the
features and target values shown in Table II.

2) ARIMAX: We follow the framework of Section IV-B2,
where we use the following inputs and outputs:

0w = Vec(¢(k>7¢(Nk)7¢(7k)7¢(ACCk)> and  y, =
¢(RES)) when estimating each NASA-TLX subscale
ratings with scheme S4a;

i) g = veo(@(k), ¢(Ne), 6(mi), S(RESIL,)) and g, =
¢(ACC},) when estimating operator classification accu-
racy with schemes S4b and S4b’. For scheme S4b’, we set
p = d = 0 to exclude past primary OPM measurements.

3) Kalman Filtering on Transformed Data: We use the same
modeling framework as presented in Section IV-B4, and learn
linear models with inputs uy, = vec (¢(k), ¢(N)) and outputs

i) yr = vec (p(11), 9(ACCy), ¢(RES)) when estimating
each NASA-TLX subscale ratings with scheme S4a.

i) yr = vec (o(73), p(ACCy), #(RES)), when estimating
operator classification accuracy (S4b and S4b’).

The estimation procedure is then exactly the same as in
Section IV-B4, where data(k) used for estimation is as specified
in Table II.

4) Nonlinear Filtering Based on 10-HMMs: We use a mod-
eling framework for IO-HMM similar to the one presented in
Section I'V-B and consider the following as the input and output
of the [O-HMM:

i) up = vec (N, k).

i) yr = vec (1x, |[ACCy |, RES;) when estimating each
NASA-TLX subscale rating with scheme S4a.

iii) yx = vec (7, RES2! | ACC},) | when estimating opera-
tor classification accuracy with schemes S4b and S4b’.

The estimation procedure is then exactly the same as in
Section IV-B35, where data(k) used for estimation is as specified
in Table II.

E. Estimation Schemes S5

Scheme S5 (i.e., S5a, S5b, and S5b’) is similar to S4 except
that the NASA-TLX subscale ratings are available every ¢,
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Fig. 3. Box plot comparing RMSE for the best estimators in schemes S1-S4
for (a) NASA-TLX subscale ratings and (b) operator classification accuracy.

rounds, where t,,, is called the measurement interval. We con-
sider the same estimators as in S4. For finite window regressors,
ARIMAX, and RNN-LSTM we carry forward the last observed
values for the missing measurements during both training and
estimation. For Kalman filtering and IO-HMMs, we use time-
varying observation channels, i.e., the matrix C' in the case of
Kalman filtering and the kernel () in the case of I0-HMM:s
change at different rounds & (for both training and estimation)
to capture the fact that RESy, is available every ¢,,, interval.

V. RESULTS

We use the following abbreviations to present our results.
SR-MD: Self reported mental demand, SR-TD: Self reported
temporal demand, SR-Perf: Self reported performance, SR-
Effort: Self reported effort, SR-Frust: Self reported frustration
and Obs-Acc: Operator classification accuracy.

For each scheme, the summary statistics of each estimator’s
RMSE are given in the supplementary material, where we show
the median and quantiles in the form median[qy, g3], where ¢
and g3 represents 25% and 75% quantiles of the data, respec-
tively. For scheme S5, we only show the data for three values
of measurement interval: ¢,, € {3,5,8}. To compare across
schemes, we pick the estimator with the smallest median as
the representative estimator for each scheme. The performance
values of the representative estimators for schemes S1-S4 are
shown in Fig. 3. Those for scheme S5 for different values of mea-
surement interval ¢,,, are shown in Fig. 4, with the performance
of S4 also shown for comparison.

Fig. 3(a) suggests that for estimating the NASA-TLX sub-
scale ratings in general the median RMSE of the different
schemes are in the order S4a < S3a < S2a < Sla,? except for
the performance subscale, where all schemes perform roughly
the same. Fig. 3(b) shows the box plot of RMSE values when
operator classification accuracy is estimated using S¢b and Sib’,
respectively, where i € {1,2,3,4}. Fig. 3(b) suggests that for
estimating operator classification accuracy, the median RMSE

2The notation Sia < Sja means that scheme Sia performs better than scheme
Sja.
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Fig. 4. Comparison of RMSE of schemes S4a and S5a. The median is shown

by solid lines and the interquantile range is shown by vertical error bars for S4a
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TABLE III
p-VALUES FOR T-TESTS WHEN COMPARING BETWEEN SCHEMES S1-S4

Scheme

! SR-MD SR-TD SR-Perf  SR-Effort SR-Frust Obs-Acc
comparison

$2 < S1 0.038 0.075 0.491 0.083 0.314 0.459
S3 < 82 4.53 X 107¢  1.4x10-% 0.425 8.58 x 1075 8.6. x 10~%  0.305
S4 < S3 0.21 0.17 0.35 0.091 0.015 0.78

p-values below 0.1 are shown in bold, those below 0.01 are also underlined.

values for all schemes S1b—S4b and S1b’-S4b’ are roughly the
same.

In the following, we answer the research questions posed in
Section IT using the data shown on Fig. 3 and Fig. 4. In addition,
we perform a series of independent samples t-tests [47]. Each test
compares two schemes. We use the notation Si < Sj to denote
the t-test, where the null hypothesis is that the average RMSE
of scheme Si is equal to that of scheme Sj, while the alternative
hypothesis is that the average RMSE of scheme S: is less than
that of scheme Sj. The p-values for the t-test when comparing
between schemes S1-S4 are shown in Table III, where the more
statistically significant test results are outlined.

Similarly, when comparing between schemes S¢ and the cor-
responding Sz’ we use the notation S¢ < Sz’ to denote the t-test
where the null hypothesis is that the average RMSE of S: is
equal to Si’, while the alternative hypothesis is that the average
RMSE of Si is less than S¢’.

A. Answer to Q1

To answer QI, we test S2 < S1. Fig. 3 indicates that incor-
porating the history of passive measurements and task charac-
teristics helps reduce the estimation error of SR-MD, SR-TD,
and SR-Effort, with stronger statistical evidence that this is the
case for SR-MD (p-value 0.038). However, there is insufficient

evidence to support this conclusion for the SR-Perf and SR-Frust
NASA-TLX subscales or for operator classification accuracy.

B. Answer to Q2

Question Q2 is answered by two tests: S3 < S2, for which we
have strong statistical evidence in the case of SR-MD, SR-TD,
SR-Effort, and SR-Frust; and S4 < S3, for which we have statis-
tical evidence for SR-Frust and, to a lesser extent, for SR-Effort.
Thus, we conclude that including the /ast NASA-TLX subscale
rating reduces the estimation error of these ratings for mental
demand, temporal demand, effort and frustration. Moreover,
including additional historical measurements of NASA-TLX
subscale ratings seems to help reduce the estimation error of
the effort and frustration subscale ratings. However, there is
insufficient evidence to support the same conclusions for other
NASA-TLX subscale ratings or for operator classification accu-
racy.

C. Answerto Q3

As reported in the last section, for Q2 we found insufficient
evidence to conclude that past measurements of NASA-TLX
subscale ratings help in estimating SR-Perf or Obs-Acc. So, for
Q3, we focus on the remaining NASA-TLX subscales: SR-MD,
SR-TD, SR-Effort, and SR-Frust. The RMSE of different esti-
mators for S5a for different values of the measurement interval
t,, are shown in Fig. 4, where the RMSE for S4a is also shown
for comparison.

Fig. 4 highlights the tradeoff between the measurement in-
terval and RMSE. A smaller measurement interval implies a
smaller RMSE, but at the expense of the operator having to
answer the questionnaires more frequently, which could distract
from the primary task. A larger measurement interval reduces
the frequency of intrusive questionnaires but at the expense
of the larger RMSE. Fig. 4 shows the exact tradeoff between
performance and measurement interval, which can be useful for
choosing the value of ¢, in specific applications. Given that
each round in this experiment lasted two minutes, the figure
also sheds some light on the dynamics of MW (as measured
by the NASA-TLX) and the extent of its temporal correlations,
which can be exploited by dynamic estimators.

D. Answer to Q4

Q4 is answered by a series of tests Sib < Sib’ for 7 €
{1,2,3,4}. None of the tests are statistically significant (p values
are between 0.39 to 0.77, see supplementary material). There-
fore, we do not have evidence to conclude that past observations
of primary OPM measurements reduce the RMSE (estimation
error) for operator classification accuracy in this experiment,
once the secondary OPM measurements and task characteristics
are taken into account.

VI. DISCUSSION

Our analysis shows that incorporating the last observed
NASA-TLX subscale ratings, the history of primary and
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secondary OPM measurements and the task characteristics im-
proves the estimation of all NASA-TLX subscale ratings, except
for self-reported performance. Moreover, adding more history
of past NASA-TLX subscale ratings further helps estimating the
MW components captured by the effort and frustration subscales
of the NASA-TLX. Therefore, we have evidence to support
the dynamic nature of several components of MW, and the
usefulness of employing dynamic models for their estimation.

On the other hand, we cannot conclude for our experiment
that past measurements of subscale ratings, primary and sec-
ondary OPMs and task characteristics improve the estimation of
self-reported performance in the NASA-TLX questionnaires, or
of the actual operator classification accuracy. This may be due
to insufficient data, or more plausibly due to specific features
of our experiment. In separate analysis, we have also tried to
estimate operator accuracy at round % using only the NASA-
TLX subscale ratings collected at the end of that round, but
the estimation performance was worse than by simply using
the secondary OPM measurements (average classification time)
for the round, which moreover are obtained more easily and
earlier than subjective ratings. Similar dissociation between MW
and task performance has been previously reported in the liter-
ature [48], [49], [50], [51]. This motivates the use of additional
more objective measurements to predict operator performance,
such as secondary OPMs or physiological measurements. In
particular, for our experiment a simple regression model as in
Scheme S1b’ based on secondary OPMs and task characteristics
was sufficient to estimate operator accuracy. In any case, further
work is needed to identify conditions under which MW or other
cognitive state assessments can help predict future operator
performance, given the interest in using such assessments to
adjust the level of automation dynamically.

Based on our analysis, we can make prescriptive recommen-
dations for choosing schemes when estimating an operator’s
MW (or, equivalently here, NASA-TLX subscale ratings). In
certain applications, obtaining direct subjective measurements
of MW is difficult because administering a questionnaire can
interfere with the operator’s task. In those cases, estimation of
MW can be performed by monitoring operator performance, as
in schemes Sla and S2a. In our experiment, we found evidence
that using dynamic estimators leveraging past performance mea-
surements can help improve MW estimates along several dimen-
sions. In applications where subjective measurements can be
obtained, we obtained strong evidence that using the most recent
of these measurements (in our experiment, obtained two minutes
prior at the end of the previous round) is helpful to predict
most dimensions of MW. However, the benefits of leveraging
additional past subjective measurements were more limited.
Furthermore, we evaluated through scheme 5a that the MW
estimation performance steadily degrades, within minutes, as the
latest subjective measurements get older. This sheds some light
on the temporal dynamics of the characteristics MW captured
by the NASA-TLX questionnaire.

VII. CONCLUSION

In this article, we studied dynamic estimation of operator
MW, as measured by different subscales of the NASA-TLX

questionnaire, and operator classification accuracy, using var-
ious estimation schemes. In our analysis, using dynamic esti-
mation led to significant reduction in estimation error for most
NASA-TLX subscales; however, the reduction in estimation
error was limited for the NASA-TLX self-reported performance
subscale and for actual operator classification accuracy, once the
information contained in secondary performance metrics and
task characteristics was taken into account.

In our current setup, the workload at each round was fixed
before the start of the experiment. An interesting and important
future direction is to evaluate dynamic adaptation of task load
based on estimated values of MW and operator performance
measurements.
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