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Notation

For a set M
o Variables: Xy = (Xin: m € M).

o Spaces: Xpm = H X

meM

o o-algebras: §m = ® Sm

meM



Model for a sequential team

o A collection of n system variables, (Xy,k € N) where N ={1,...,n}
o A collection {(Xy, 3x)ken of measurable spaces.

o A collection {Iy}xen of information sets such that Iy C {1,...,k—1}
o A set A C N of controllers/agents.

o A set RC N of rewards.

o The variables X\\a are chosen by nature according to stochastic kernels

{Prlkenna Where py is a stochastic kernel from (Xy,,§1,) to (X, Fx).



Objective

o Choose a strategy {gxlkea such that the control law gy is a measurable

function from (X, §1.) to (X, Fk)-

o Joint measure induced by strategy {gxlken

P(dXn) = @) prldXilX1,) (X) 8, (x,, ) (dX)
keN\A kEA

o Choose a strategy to maximize

e Y xi}

ieR

This maximum reward is called the value of the team
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Generality of the model

This model is a generalization of the model presented in

Hans S. Witsenhausen, Equivalent stochastic control problems,

Math. Cont. Sig. Sys.-88
which in turn in equivalent to the intrinsic model presented in

Hans S. Witsenhausen, On information structures, feedback and causality,

SICON-T71

which is as general as it gets.



Team form

A (sequential) team form is the team problem
where the measurable spaces {(Xy, §k)ken and the
stochastic kernels {pxlrenya are not pre-specified.

T = (N, A,R,{Ix}xen): system variables, control variables, reward variables, and

the information sets are specified.

M



Equivalence of team forms

Two team forms T = (N, A, R, {Ix}xen) and 7" = (N, A/, R {[} }xen) are equivalent if

the following conditions hold:
. N=N,A=A’ and R=R/;
2. for all k e N\ A, we have Iy =I};

3. for any choice of measurable spaces {(Xy, k) ken and stochastic kernels

{Prlken\a, the values of the teams corresponding to T and 7 are the same.

The first two conditions can be verified trivially. There is no easy way to check

the last condition.
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Simplification of team forms

A team form T’ = (N, A, R, {I, ken’) is a simplification of a team form
T = (N> A) R) {Ik}keN) if

T’ is equivalent to T

and D ml< ) Ind.

keA keA

T is a strict simplification of T if 77 is equivalent to T, |Ii| < [Ix| for k € N, and

at least one of these inequalities is strict.
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Given a team form, can we simplify it?

Asking for simplification of a team form is same as asking for
structural properties that do not depend on the nature of the
process (discrete or continuous values), the specific form of
probability measure (Gaussian, uniform, binomial , etc.) and

the specific properties of cost function (convex, monotone, etc.)
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Some Preliminaries
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Partial Orders

A strict partial order < on a set S is a binary relation that is transitive,

irreflexive, and asymmetric. i.e., for a, b, ¢ in S, we have

1. if a<band b <c, then a < c (transitive)
2. a £ a (irreflexive)

3. if a<Db then b £ a (asymmetric)

The reflexive closure < of a partial order < is given by

a<Xbifandonlyifa<bora=>b

W 1]



Partial Order

Let A be a subset of a partially ordered set (S, <). Then, the lower set of A,
denoted by K is defined as

%
A ={beS:b=afor someacA}

By duality, the upper set of A, denoted by X is defined as

X::{bES:ajbforsome aec A}l
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Sequential teams and partial orders

\j Hans S. Witsenhausen, On information structures, feedback and causality,
SICON-71

\j Hans S. Witsenhausen, The intrinsic model for discrete stochastic control:
Some open problems, LNEMS-75

A team problem is sequential if and only if
there is a partial order between the agents

MM



Partial orders can be
represented by directed graphs
So, sequential teams can be
represented as directed graphs

T HTIHT |



Representing teams using directed graphs

ﬂ Hans S. Witsenhausen, Separation of estimation and control for discrete time

systems, Proc. IEEE-71.
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Representing teams using directed graphs

d Yu-Chi Ho and K’ai-Ching Chu, Team Decision Theory and Information
Structures in Optimal Control Problems—Part I, TAC-72.
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Representing teams using directed graphs

Tseneo Yoshikawa, Decomposition of Dynamic Team Decision Problems,
TAC-78.

Y

Fig. 1. Precedence diagram.
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Representing teams using directed graphs

Steffen L. Lauritzen and Dennis Nilsson, Representing and Solving Decision

Problems with Limited Information, Management Science-2001.
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None of these fit our requirements
perfectly. So, we use DAFG
(Directed Acyclic Factor Graphs)
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A graphical model for sequential team forms
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A graphical model for sequential team forms

Directed Acyclic Factor Graph § = (V,F E) for T = (N, A, R, {Ix}xen)
V=Nx{0}, F=Nx{1}

E={(k" k% :ke NJU{{i%Kk") :k e N,ie L}
o Vertices
Variable Node k° = system variable X
Factor node k! = stochastic kernel py or control law gy.
o Edges
(k', k%) for each k € N

(i% k') for each k € N and i € Iy

JHT T T IHT 11



An Example: Real-time communication

ﬂ Hans S. Witsenhausen, On the structure of real-time source coders, BSTJ-79

[ Source )i{ Encoder H Receiver )ﬁs
M

First order Markov source {St,t =1,..., T}

Real-Time Encoder: Y; = c¢(St, Yt )
Real-Time Finite Memory Decoder: St = ge(Ye, M1)
M = Li(Ye, M)
Instantaneous distortion p(St,§t)
T

Objective: minimize E{ Z P(St, §t)}

t=1

T IHT 1T



An Example: Real-time communication
D, @ D, @ D;: @
P OPer P [OPp. OPfs [ Poes
5O §0 S0 50 $0O 50
HC HY9 HEHC2 HY9 HEHCG HJ
YTOMO 2O MO Y30
H HL

T IHT T IHT 1T



An Example: Real-time communication

D, @ D, @ D; @

|_|__|pf1 I—_|_|ppl |_I__|pf2 |__|_|ppz |_I__|pf3 |__|_|pp3

SO $§0O S0 50 S5O S0

HC B9 HOCO HJ: HC N 93

[

T IHT T T |



An Example: Real-time communication

D, @ D, @ D; @

T THT IHT LT T 1]



Checking conditional independence

\j Dan Geiger, Thomas Verma, and Judea Pearl, Identifying independence in

Bayesian networks, Networks-90.

Conditional independence can be
efficiently checked on a directed graph.

Given a DAFG § = (V,FE,D) and sets A,B,C C V, Xa is irrelevant to Xg
given Xc if Xa is independent to X given Xc for all joint measures P(dXy) that

recursively factorize according to S.
Data irrelevant to Xa given Xc s

Rg(XA!XC) ={k € C: Xi is irrelevant to X5 given Xc}

T IHT LT IHT T I



Back to simplification of team forms
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Completion of a team

A team form T = (N, A, R, {Ix}ken) is complete if for k,1 € A, k # 1, such that

I, C Iy we have Xy € I;. If 1 knows the data available to k, then | also knows the

action taken by k).

If a team is not complete, it can be completed by sequentially adding “missing

links”

Depending on the order in which we proceed, we can end up with different

completions. However,

all completions of a team form are equivalent.

HHT LHT T T T T



Completion of a team form
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Completion of a team

‘:I Pos




Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

T IHT T T JHT T 1



Removing irrelevant nodes

Recall Given a DAFG § = (V,FE,D) and sets A,B,C C V, Xa is irrelevant to Xg
given Xc if Xa is independent to X given Xc¢ for all joint measures P(dXy) that

recursively factorize according to § and

Rg(XA!XC) ={k € C: Xy is irrelevant to X5 given Xc}

For any k € A in a team form T = (N, A, R, {Ix }xen),
) B —
replacing X1, by Xp, \ (R9 (Xr N Xk | X1, Xi) \ X

does not change the value of the team.

HHT IHT LT JHT IHT T 1]



Removing irrelevant nodes
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Removing irrelevant nodes

]pps

M Nl
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Removing irrelevant nodes
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Removing irrelevant nodes
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Removing irrelevant nodes
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Removing irrelevant nodes
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Removing irrelevant nodes

T IHT JHT JHT T T T T |



Removing irrelevant nodes

M Nl
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Removing irrelevant nodes

Y1 M1 <‘ Y2 M2 (?&)
Y = c¢(St, M)

M Nl
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Simplification of team forms
Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant to
XR N 7k g'wen (XIk> Xk)

(Note: The resultant team form is equivalent to the original)

IHT LHT IHT I THT IHT IHT T 11



Does not always work

T LHT IHT IHT JHT IHT IHT T T



Another Example: Shared randomness

—{Controller 1)J]
At
[ =
At
Controller 2

Shared Randomness: {Z;,t=1,...,T}

[ Plant )i

LRandomnes

{ Shared )
S

Plant: St+] = ft(St, A,][, A%, Wt)

independent of plant disturbance and observation noise.
Control Station 1: Al = g!(St, A1/ 7Y)  Control Station 2: AZ = g#(St, A1 71

Instantaneous cost: p¢(St, Al, A% )

T THT THT AT LT T T IHTIHT |



Another Example: Shared randomness
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Another Example: Shared randomness (Step 1)
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Coordinator for a subset of agents

For a,b € A, consider a coordinator that observes X¢ = Xi, N X;, and chooses

partial functions gq : Xp,\c = Xa and Gy : Xp\c — Xo.

Agent a and b simply carry out the computations prescribed by g, and gy
Remove irrelevant incoming edges at the coordinator!

Equivalently, at agents a and b, remove edges from nodes that are irrelevant to

Xr N Y{a,b} g'wen (Xc, X{a,b})o

T JHT T T JHT T IHT T T 11



Coordinator for a subset of agents

For any B C A in a team form T = (N, A, R, {Ix ken)

and any b € B, let X¢ = ﬂ X1,- Then, replacing
beB

Xy, by X1, \ (R5(Xz N X5 | Xc, X5) \ Xp)

does not change the value of the team

JHT THT JHT IHT IHT IHT LHT JHT IHT IHT




Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant to
XR N 7k g'wen (XIk> Xk)

(Note: The resultant team form is equivalent to the original)

Step 3: At all nodes of any subset B of A, remove incoming edges from nodes

irrelevant to Xg N 73 given (|J Xi,, Xg).
beB

(Note: The resultant team form is equivalent to the original. Furthermore, this

computation can be carried out efficiently on a lattice of shared information.)

T IHTIHT IHT LHT JHT JHT IHT LT JHT |



Another Example: Shared randomness (Step 3)
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Another Example: Shared randomness (Step 3)

Z Z
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Another Example: Shared randomness (Step 3)

Z Z
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Another Example: Shared randomness (Step 3)

Z Z
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Another Example: Shared randomness (Step 3)

Z Z

T HHT IHT JHT IHT THT IHT JHT IHT LT IHT |



Another Example: Shared randomness (Step 3)
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Another Example: Shared randomness (Step 3)

Z Z

+—0 —0O
Pz, Pz,
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Another Example: Shared randomness (Step 2)

T IHT T JHT IHT T AT IHT T T T 1]



Another Example: Shared randomness (Step 1)

Al = gl(st)
A% = gg(staA’l)

JHT JHT LT LT T LT T JHT JHT JHT T T



Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant to
XR N 7k g'wen (XIk> Xk)

(Note: The resultant team form is equivalent to the original)

Step 3: At all nodes of any subset B of A, remove incoming edges from nodes

irrelevant to Xg N 73 given (|J Xi,, Xg).
beB

(Note: The resultant team form is equivalent to the original. Furthermore, this

computation can be carried out efficiently on a lattice of shared information.)

JHT JHT JHT T T T T JHT JHT T T T |



Conclusion

Team form for sequential teams, equivalence and simplification of team forms.
Representing a team form as a DAFG

Carrying out the simplification of the team form on the DAFG. This process can
be automated.

Future Directions

Sequential decomposition of a team form on a DAFG (The sequential

decomposition of Witsenhausen’s standard form can be carried out efficiently on

a DAFG).

Adding belief states / information states (need to study conditional independence

properties and define an appropriate notion of simplification)

JHT LT T T JHT IHT T T T LT T T ]



Thank you
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