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An algorithmic framework that identifies irrelevant data (i.e., data thatmay be ignoredwithout any loss of

optimality) at agents of a sequential team is presented. This framework relies on capturing the properties

of a sequential team that do not depend on the specifics of state spaces, the probability law, the system

dynamics, or the cost functions. To capture these properties the notion of a team form is developed. A

team form is thenmodeled as a directed acyclic graph and irrelevant data is identified using D-separation

properties of specific subsets of nodes in the graph. This framework provides an algorithmic procedure

for identifying and ignoring irrelevant data at agents, and thereby simplifying the form of control laws

that need to be implemented.
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1. Introduction

Teams refer to multi-agent stochastic control systems in which

all agents have a common objective. Teams arise in many modern

technologies including networked control systems, communica-

tion networks, sensor and surveillance networks, environmental

remote sensing, and smart grids. Dynamic programming, which

is the main solution concept for optimal design of centralized

stochastic control, onlyworks for specific sub-classes of teamprob-

lems (Nayyar, Mahajan, & Teneketzis, 2013). To apply the dynamic

programming principle to general team problems, one needs to

identify the structure of optimal control laws. Such structural re-

sults are of two type: (i) remove irrelevant information at the con-

troller; (ii) identify a sufficient statistic of the data available at the

controller. In this paper, we present an algorithmic approach to
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identify the first type of structural result. As an example of such
structural results, consider the problem of real-time communica-
tion studied in Witsenhausen (1979).

Example 1. Consider a real-time communication system consist-

ing of a source, an encoder, and a decoder. The source is a first-

order Markov process {St}
∞
t=1. The encoder observes the source

output and generates quantized symbols Qt , causally and in real-

time, as follows

Qt = et(S1:t ,Q1:t−1)

where S1:t is a short hand notation for (S1, . . . , St) and Q1:t−1 has

a similar interpretation. The decoder is a finite state machine. Mt

denotes the state of the machine at time t . The decoder generates

an estimate Ŝt of the source as follows

Ŝt = dt(Qt ,Mt−1)

and updates the contents of its memory as follows

Mt = gt(Qt ,Mt−1).

At each time a distortion ct(St , Ŝt) is incurred. The objective is

to choose an encoding policy e := (e1, e2, . . . , eT ), a decoding

policy d := (d1, d2, . . . , dT ), and a memory update policy g :=
(g1, g2, . . . , gT ) to minimize

E(e,d,g)


T



t=1

ct(St , Ŝt)



.
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The following two structural results hold for Example 1.

(1) For any decoding and memory update strategies (d, g), there
is no loss of optimality in restricting attention to an encoding

strategy of the form

Qt = et(St ,Mt−1).

(2) When Mt−1 = Q1:t−1, there is no loss of optimality in

restricting attention to encoding and decoding strategies of the

form

Qt = et(St ,Πt) and Ŝt = dt(Qt ,Πt)

whereΠt(s) = P(St = s | Q1:t−1).

The first structural result shows that S1:t−1 and Q1:t−1 are irrelevant

at the encoder. The second structural result shows that Πt is

a sufficient statistic for Q1:t−1. The first structural result was

proved in Witsenhausen (1979) and the second in Walrand

and Varaiya (1983). Based on the second structural result, a

dynamic programming decomposition was presented in Walrand

and Varaiya (1983).

In this paper, we develop an algorithmic framework to identify

irrelevant data at agents in a team. Removing such irrelevant

data is usually the first step in deriving a dynamic programming

decomposition for teams. For example, in the above example, the

derivation of the second structural result (and therefore of the

dynamic program) relies on the first structural result.

Structural results that remove irrelevant data are robust to

various modeling assumptions: the specifics of the state spaces,

the underlying probability measure, and the specifics of the

plant dynamics and the cost functions. All that matters is the

form of the system. We model dynamical systems using directed

acyclic graph in such a manner that captures the form of a team.

Removing irrelevant data is equivalent to removing edges from

the corresponding directed acyclic graph. To identify the irrelevant

data, we use graphical modeling algorithms to iteratively apply

Blackwell’s principle of irrelevant information (Blackwell, 1964),

which we state below for completeness.

Theorem 1 (Blackwell’s Principle of Irrelevant Information). For any

Borel spacesX,Y, andU, let P be a probability measure onX×Y and

c : X × U → R be a bounded Borel-measurable function. Then for

any Borel-measurable function g : X×Y→ U, there exists another

Borel measurable function h : X→ U such that

E[c(x, h(x))] ≤ E[c(x, g(x, y))]

where the expectation is with respect to P.

A consequence of Theorem 1 is the following. Consider the op-

timization problem of choosing a control law g : X × Y → U

to minimize E[c(x, g(x, y))]. Then, there is no loss of optimality in

restricting attention to control laws of the form h : X→ U. Equiv-

alently, the observation y is irrelevant for optimal control. In this

paper, we present algorithms that recursively apply Blackwell’s

principle at each agents and groups of agents to identify irrelevant

data in teams.

1.1. Literature overview

Team problems were introduced in the economics literature in

the 1950s (Marschak & Radner, 1972; Radner, 1962) and have been

extensively analyzed in the control literature since the 1970s (Ho,

1980; Sandell, Varaiya, Athans, & Safonov, 1978; Witsenhausen,

1971). Motivated by applications in networked control systems,

there has been tremendous activity in the study of team problems

in the last decade. We refer the reader to Mahajan, Martins,

Rotkowitz, and Yüksel (2012) and references therein for a detailed

literature overview.

Broadly speaking, team problems are modeled either in state
space using information structures or in input–output formula-
tion using sparsity constraints. We follow the former modeling
paradigm in this paper. Such models are analyzed either for the
LQG setup (linear dynamics, quadratic cost, and Gaussian distur-
bances) or general (non-linear) Markovian setup. In this paper, we
follow the latter setup and develop an algorithmic procedure to
identify and remove irrelevant data at each agent.

We model teams using a directed acyclic graph (DAG) and use
algorithms from graphical models to remove edges that corre-
spond to irrelevant data. A DAG is a natural structure to model the
causality and partial order relationship between the system vari-
ables of a sequential team. Other researchers have also used DAGs
to model sequential teams (Gattami, 2007; Ho & Chu, 1972; Wit-
senhausen, 1971; Yoshikawa, 1978) but, to the best of our knowl-
edge, the idea of using graphical modeling algorithms on the DAG
representation to identify and remove redundant information has
not been used before.

1.2. Contributions

Our main contribution is to present a graphical model for
sequential team. This model captures the information structure of
the systemand the conditional independence relations between all
system variables.

Using this graphicalmode,wedevelop graphicalmodeling algo-
rithms that identify irrelevant data at each agent. An agent can ig-
nore this data without any loss of optimality. Two such algorithms
are presented. The first algorithm sequentially identifies irrelevant
data at each agent in the system. Preliminary versions of this algo-
rithm were presented in Mahajan & Tatikonda, 2009a,b. The sec-
ond algorithm sequentially identifies irrelevant data at all possible
subsets of agents in the system. These algorithms do not depend
on the type of system dynamics or the cost function.

The rest of the paper is organized as follows. In Section 2 we
define team form and team type and formulate the problem of
simplification of a team form. In Section 3 we present background
material on graphical models and in Section 4 we describe how
to represent a team form using a DAG (directed acyclic graph).
Simplification of a team form may be viewed as removing edges
from this DAG. Algorithms that perform this simplification are
presented in Section 5 (for a single agent) and Section 6 (for a group
of agents). Examples illustrating this approach are presented in
Section 7 and we conclude in Section 8.

1.3. Notation

We use the following notation in the paper.

• For a set A, |A| denotes the cardinality of A.
• For two sets A and B, A× B denotes their Cartesian product.
• For two measurable spaces (X,F ) and (Y, G ), F ⊗ G denotes

the product σ -field on X× Y.
• For two probability measures µ on (X,F ) and ν on (Y, G ),
µ⊗ ν denotes the product probability measure on F ⊗ G .
• X1:t is a short hand for the sequence (X1, X2, . . . , Xt).
• For a set N and a sequence of random variables {Xn}, XN is a

short-hand for (Xn : n ∈ N).
• For a set N and a sequence of state spaces {Xn}, XN is a short-

hand for


n∈N Xn.
• For a set N and a sequence of σ -fields {Fn}, FN is a short-hand

for


n∈N Fn.

2. Modeling sequential team using team form and team type

A sequential team is a decentralized control system consisting
of multiple agents (also called controllers or decision makers),
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indexed by a set A. Agent α, α ∈ A, chooses a control action Uα .

Nature chooses |B| primitive random variables {Wβ : β ∈ B}.
These variables are chosen independently according to a product

probability measure Q . The system variables {Sm : m ∈ M} are
generated when the system evolves with time. All these variables

are collectively indexed byN = A∪B∪M and denoted by a generic

term Xn. Variable Xn, n ∈ N , takes values in a measurable space

(Xn,Fn).
Agentα,α ∈ A, observes some data {Xn : n ∈ Iα}; the set Iα ⊆ N

is called the information set of agent α. Agent α chooses action Xα
(also denoted by Uα), according to a control law gα :



XIα ,FIα



→
(Xα,Fα) as Xα = gα(XIα ). The collection g := (gα : α ∈ A) is
called a control policy.

Each system variable Xm (also denoted by Sm), m ∈ M , is

also associated with an information set Im and a dynamics function

fm :


XIm ,FIm



→ (Xm,Fm). The variable Xm is generated as

Xm = fm(XIm). The collection (fm : m ∈ M) is called the system

dynamics.

The system is sequential (Witsenhausen, 1975). This means that

a bijection ϕ : N → {1, 2, . . . , |N|} exists such that for any

n ∈ ϕ(A ∪M), Iϕ−1(n) ⊆ ϕ
−1({1, 2, . . . , n− 1}). Consequently, we

can impose a total order on all the system variables such that the

total order is consistent with the causal relationship between the

variables and, at the same time, does not depend on the realization

of the primitive random variables or the choice of control policy.

As shown in Witsenhausen (1975), a sequential system has the

following equivalent representation. Define a binary operator←
on A ∪ M such that for n,m ∈ A ∪ M , n ← m iff n ∈ Im. Then a

system is sequential if and only if the transitive closure of← is a

partial order. We will use this latter characterization in this paper.

In a sequential system, any choice g of a control policy induces a

probability measure Pg on all system variables {Xn : n ∈ N}which

is given by

Pg(XN) =


m∈M

δ(Xm = fm(XIm))

⊗


α∈A

δ(Xα = gα(XIα ))⊗


β∈B

Q (Xβ) (1)

where δ(·) is a Dirac measure. The performance of a control policy

is quantified by expectation (with respect to Pg) of a cost function


k∈K ck(XDk
)where K is a finite set, the sets Dk, k ∈ K , are subsets

ofN and ck :


XDk
,FDk



→ (R,B), whereB is the Borelσ -algebra
over reals.

Formally, a sequential team is specified by two parts: the team

form and the team type.

Definition 1 (Team Form). A team form is specified by three

components:

(1) Variable Structure (N, A, B,M)where:
• N is a finite set that indexes all the variables of the system
• A, B, andM are disjoint subsets ofN such that A∪B∪M = N .
• The set A indexes the agents and their control actions.
• The set B indexes the primitive random variables.
• The setM indexes the system variables.

(2) Information Structure {In : n ∈ A ∪M}:
• For any n ∈ A ∪M , In ⊆ N .
• For n ∈ A, the set In denotes the information set of agent n

(i.e., the set of all variables observed by agent n).
• For n ∈ M , the set In denotes the information set of

variable Xn (i.e., the set of variables coupled to Xn through

the dynamics).
• The collection {In : n ∈ A ∪ M} satisfies the following

property. Define a binary relation← on A ∪M such that for

n,m ∈ A ∪ M , n ← m if and only if n ∈ Im. The transitive

closure of← is a partial order on A ∪M .

(3) Cost Structure (K , {Dk : k ∈ K}):
• The set K indexes the coupled cost terms

• The sets Dk ⊂ N , k ∈ K denote the variables coupled by the

kth cost term.

Definition 2 (Team Type). A team type is specified by four

components

(1) Measurable Spaces {(Xn,Fn) : n ∈ N}:
• Variable Xn, n ∈ N takes value inmeasurable space (Xn,Fn).

(2) Probability Measure Q :

• Q is a product measure on the primitive random variables

{Xβ : β ∈ B}.
(3) System dynamics {fm : m ∈ M}:
• fm :



XIm ,FIm



→ (Xm,Fm) is a measurable function such

that Xm = fm(XIm).
(4) Cost functions {ck : k ∈ K}:
• ck :



XDk
,FDk



→ (R,B) denotes the kth cost function. The

total cost incurred in the system is


k∈K ck(XDk
).

Definition 3 (Control Policy).A control policy for a sequential team

is a collection g := {gα : α ∈ A} such that

gα :


XIα ,FIα



→ (Xα,Fα).

Given a control policy, the control variables are generated as Xα =
gα(XIα ).

We are interested in the following stochastic control problem.

Problem 1. Given a team form and a team type, choose a control

policy g to minimize Eg




k∈K ck(XDk
)


where the expectation

is with respect to the induced probability measure Pg. The

corresponding minimum cost is called the value of the team.

Remark 1. (1) Instead of using primitive random variables, an

equivalent way to describe system dynamics is using aMarkov

kernel on the next state conditioned on the current state and

the control action.

(2) There is no loss of generality in assuming that the primitive

random variables are independent. Correlated primitive ran-

dom variables may be viewed as system variables generated

from independent primitive random variables.

(3) Our definition of a control law does not rule out the possibility

of randomized control laws. A randomized control law is in

fact a deterministic control law where the agent observes an

additional ‘‘randomizing’’ primitive random variable that is

used to pick the control action.

(4) The model described above is similar to the model considered

in Witsenhausen (1988), which, in turn, was shown to be

equivalent to the intrinsic model (Witsenhausen, 1971, 1975)

when specialized to sequential teams. By a similar argument,

the above model is equivalent to the intrinsic model.

(5) Throughout this paper,wewill assume that for alln ∈ N , theσ -
algebras Fn are countably generated and contain all singletons

of Xn. Borel σ -algebras satisfy these properties.

(6) Since N is finite and for all k ∈ K , Dk ⊆ N , we are implicitly

assuming that K is finite as well. Thus, the discussion in this

paper is restricted to finite horizon systems.

As an example, the team form corresponding to the real-time

communication system of Example 1 is given as follows. First

note that a first-order Markov process {St}
T
t=1 may be represented

as St = ϕt(St−1,Wt−1) using the inverse transform method or

Smirnov transform (Grimmett & Stirzaker, 2001, Sec 4.11) such

that {Wt}
T
t=1 is an independent process that is also independent of

S1. With this representation, the team form of Example 1 is given

by:
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(1) Variable structure

• Control variables: XA = {Q1:T ,M1:T−1, Ŝ1:T }.
• Primitive variables: XB = {S1,M0,W1:T }.
• System variables: XM = {S2:T }.
• All variables: XN = XA ∪ XB ∪ XM .

(2) Information structure
• For Xn = Qt ∈ XA, the information set In is {S1:t ,Q1:t−1}.
• For Xn = Mt ∈ XA, the information set In is {Qt ,Mt−1}.

• For Xn = Ŝt ∈ XA, the information set In is {St−1,Wt−1}.
(3) Cost structure
• Set of coupled costs K = {1, . . . , T }.

• For t = 1, 2, . . . , T , Dt = {St , Ŝt}.

2.1. Equivalence and simplification of team forms

In general, Problem 1 is computationally intractable. For dis-

crete valued random variables, the problem belongs in NEXP com-

plexity class (Goldman & Zilberstein, 2004). For continuous valued

random variables, even simple two stage systems like the Witsen-

hausen counterexample (Witsenhausen, 1968) has remained an

open problem for decades. As such, most research in team theory

has focused on identifying specific information structures that are

amenable to analysis. See Mahajan et al. (2012) for an overview.

In this paper, we focus on an intermediate step involved in

solving Problem 1. For that matter, we define the following.

Definition 4 (Sufficient and Irrelevant Information for Control). The

data Jα ⊆ Iα , α ∈ A, is said to be sufficient information for control at

agent α if restricting attention to control laws of the form

gα :


XJα ,FJα



→ (Xα,Fα)

in Problem1 iswithout loss of optimality. The remaining data Iα\Jα
is said to be irrelevant information for control at agent α.

For example, in the real-time communication system of Exam-

ple 1, the data (S1:t−1,Q1:t−1) is irrelevant to the encoder at time

t . Identifying such a simplified form of the controller is usually the

first step towards a complete solution of team problems. For that

reason, instead of Problem 1, we are interested in the following

problem:

Problem 2 (Sufficient Information for Control). Given a sequential

team, identify sufficient information for control at all agents.

Or equivalently, identify irrelevant information for control at all

agents.

Definition 5 (Equivalence of Two Team Forms). Two team forms

F = ⟨(N, A, B,M), {In : n ∈ A ∪ M}, (K , {Dk : k ∈ K})⟩ and
F
′ = ⟨(N ′, A′, B′,M ′), {I ′n : n ∈ A′ ∪ M ′}, (K ′ : {D′k, k ∈ K ′})⟩ are

equivalent if

(1) They have the same variable and cost structures, i.e., there exist

a permutation σ of N and a permutation π of K such that

(σ (N), σ (A), σ (B), σ (M)) = (N ′, A′, B′,M ′), π(K) = K ′, and

∀k ∈ K , σ(Dk) = D′π(k).
(2) The information sets of the system dynamics are identical, i.e.,

∀m ∈ M, Im = I ′σ(m).

(3) For any choice of team types T , the values of the teams (F , T )
and (F ′, T ) are the same.

In the remainder of this paper, we will assume that the

permutations σ and π are identity transformations.

Definition 6 (Simplification of a Team Form). A team form F
′ =

⟨(N ′, A′, B′,M ′), {I ′n : n ∈ A′ ∪ M ′}, (K ′ : {D′k, k ∈ K ′})⟩ is
a simplification of a team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩ if

(1) F and F
′ are equivalent; and

(2) for all α ∈ A, I ′α ⊆ Iα and at least one of the inclusions is strict.

Definition 7 (Minimal Simplification). A team form F
′ is aminimal

simplification of F if

(1) F
′ is a simplification of F ; and

(2) there does not exist a team form F
′′ such that F

′′ is a

simplification of F
′.

Note that the simplification of team forms defines a partial

order on the set of all equivalent team forms; hence, a minimal

team form need not be unique.

Identifying irrelevant information (Problem 2) at all agents is

equivalent to identifying a simplification of the corresponding

team form. In particular, in the above definitions, the data Iα \ I
′
α

is irrelevant at agent α. Hence, Problem 2 is equivalent to the

following problem:

Problem 3. Given a team form, identify one of its minimal

simplifications.

3. Preliminaries on graphical models

In the sequelwemodel the team form as aDAG (directed acyclic

graph). Simplification of a team form may be viewed as removing

edges from this DAG using graphical modeling algorithms. We

present background on graphical models in this section.

3.1. Directed graphs

A directed graph G is a pair (V , E)where V is the set of vertices

and E ⊂ V ×V is the set of edges. An edge (u, v) in E is considered

directed from u to v; u is the in-neighbor or parent of v; v is the

out-neighbor or child of u; and u and v are neighbors. The set of

in-neighbors of v, called the in-neighborhood of v is denoted by

N−G (v); the set of out-neighbors of u, called the out-neighborhood

of u is denoted by N+G (u); the set of neighbors of u, called the

neighborhood of u, is denoted by NG(u).

A path is a sequence of vertices such that each vertex has a

directed edge to the next vertex in the sequence. The first vertex of

a path is its start node, the last node is its end node. A cycle is a path

with the same start and end node.

A directed acyclic graph (DAG) is a directed graphwith no cycles.

In a DAG, the set of all vertices u such that there is a path from u

to v is called the lower set or ancestors of v and denoted by
←−v .

Similarly, the set of all vertices v such that there is a path from u to

v is called the upper set or descendants of u and denoted by
−→
u . For

a subset U of vertices, the lower set (or ancestral set) of U is given

by
←−
U =



u∈U
←−
u and the upper (or descendant) set of u is given

by
−→
U =



u∈U
−→
u .

3.2. Bayesian networks with deterministic nodes

The terminology and definitions here are taken from Geiger,

Verma, and Pearl (1990). A Bayesian network with deterministic

nodes (V , E,D) is a DAG G(V , E) and a subset D of vertices that

are a deterministic function of their parents. A joint distribution P

over (Xv : v ∈ V ) is said to deterministically factor with respect to

(V , E,D) if

P(XV ) =


v∈V

P(Xv|XN
−
G
(v)).
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(a) A head-to-head vertex

v in a trail from a to b.

(b) A tail-to-tail vertex v

in a trail from a to b.

Fig. 1. Head-to-head and tail-to-tail vertices in a trail.

a b c

Fig. 2. An example illustrating the relation between D-separation and conditional

independence.

Definition 8 (Graphical Irrelevant). Given a Bayesian network

(V , E,D) and sets S1, S2, S3 ∈ V , S1 is irrelevant to S3 given

S2, denoted by (S1⊥(V ,E,D) S3)|S2, if for any joint measure P that

recursively factors with respect to (V , E,D)

P(XS1 |XS2 , XS3) = P(XS1 |XS2), P-a.s.

This conditional irrelevance can be expressed in terms of a

graph property called D-separation. To define D-separation, we

need some notation and terminology from graphical models.

A trail is a sequence of vertices such that each vertex is a

neighbor of the next vertex in the sequence. A vertex v is called

a head-to-head vertex with respect to a trail t , if t contains

consecutive vertices uvw such that (u, v), (w, v) ∈ E. See Fig. 1(a).

A vertex v is called a tail-to-tail vertex with respect to a trail t , if t

contains consecutive vertices uvw such that (v, u), (v,w) ∈ E. See

Fig. 1(b). A vertex that starts or ends a trail is a tail-to-tail vertex if

it has an outgoing edge but it is not a head-to-head vertex if it has

an incoming edge.

Definition 9 (Functionally Determined Vertices). A vertex v is

functionally determined by S ⊂ V iff v is in S or v is a deterministic

vertex and all its parents are functionally determined by S. A set of

vertices is functionally determined by S if each of its members is

functionally determined by S.

Definition 10 (D-Separation). Given a Bayesian network (V , E,D)
and disjoint sets S1, S2, S3 ∈ V , S2 is said to D-connect S1 to S3 iff

there exists a trail t between a vertex in S1 and a vertex in S3 such

that

(1) Every head-to-head vertex in t is in S2 or has a descendant in

S2.

(2) No non head-to-head vertex in t is functionally determined by

S2.

If S2 does not D-connect S1 to S3, then S2 is said to D-separate S1
from S3.

A standard result in Bayesian networks is the following (Geiger

et al., 1990; Shachter, 1998).

Proposition 1. Given a Bayesian network (V , E,D) and disjoint sets

S1, S2, S3 ∈ V , we have (S1⊥(V ,E,D) S3)|S2 iff S2 D-separates S1 from

S3.

As an example, consider the three graphical models shown in

Fig. 2.

• In case (a), P(x, y, z) = P(x)P(y|x)P(z|y); hence x and z are

conditionally independent given y. Note that y D-separates x

from z.

• In case (b), P(x, y, z) = P(x)P(z)P(y|x, z); hence x and z are

independent but they are not conditionally independent given

y. Note that y does not D-separate x from z.

Fig. 3. A DAG corresponding to the team form of the real-time communication

system of Example 1.

• In case (c), P(x, y, z) = P(y)P(x|y)P(z|y); hence x and z are
conditionally independent given y. Note that y D-separates x
from z.

D-separation can be checked in O(|E|) time by either using an
edge labeling variation of breadth first search (Geiger et al., 1990)
or using an edge based reachability analysis (called Bayes Ball)
(Shachter, 1998).

4. Representing a team form as a DAG

A team form may be modeled as a DAG as follows.

• Vertices
(1) Represent each control variable Xα , α ∈ A, by a vertex

marked with a full circle and labeled with Xα . Call the
collection of all such vertices as VA.

(2) Represent each primitive variable Xβ , β ∈ B, by a vertex
markedwith a double circle and labeled with Xβ . Call the

collection of all such vertices as VB.
(3) Represent each system variable Xm, m ∈ M , by a vertex

marked with an empty circle and labeled with Xm. Call
the collection of all such vertices as VM .

(4) Represent each cost term ck, k ∈ K , by a vertexmarkedwith
a square � and labeled with ck. Call the collection of all such
vertices as VK .

Thus, the vertex set of the DAG is

V = VA ∪ VB ∪ VM ∪ VK .

• Edges
(1) For all n ∈ A ∪M and m ∈ In draw an edge from Xm to Xn.
(2) For all k ∈ K and n ∈ Dk draw an edge from Xn to ck.
Thus, the edge set E of the DAG is

E =




n∈A∪M



m∈In

(Xm, Xn)



∪




k∈K



n∈Dk

(Xn, ck)



.

For example, the DAG corresponding the real-time communi-
cation system of Example 1 is shown in Fig. 3.

4.1. Consistency of graphical representation

For any choice of a team type T and a control policy g, the joint

probability measure Pg on (Xn : n ∈ N) factors according to (1).

This factorization is of the form

P(XN) =


n∈N

P(Xn|XN
−
G
(n))

where for n ∈ A ∪ M , Xn is a deterministic function of {Xm :
m ∈ N−G (n)}. Thus, the joint probability deterministically factors
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Algorithm 1: StrictlyExpand

input : Team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩

output: Team form F
′

begin

forall α◦ ∈ A do

forall n◦ ∈ A ∪M do

if In◦ ⊂ Iα◦ and Xn◦ /∈ Iα◦ then

let I ′α◦ := Iα◦ ∪ {Xn◦}

Iα◦ ← I ′α◦
return StrictlyExpand(F )

return F

according to the DAG G(V , E) with (A ∪ M) deterministic nodes.

Hence, the DAG representation of a sequential team is a Bayesian

network (Geiger et al., 1990).

4.2. Simplification of team forms

Simplification of a team form has a nice graphical interpreta-

tion. Let G and G′ be the DAG corresponding to F and F
′. If F

′ is

a simplification of F , then we can obtain G′ from G by dropping

some of the incoming edges to vertices in VA (marked by full circle

). To find the minimal simplification of a team form, we describe

an iterative procedure, wherewe drop some of the incoming edges

to vertices in VA at each step. When this procedure cannot find any

edges to remove, the resultant team form is minimal.

5. Simplification at a single agent

In this section we present algorithms to remove irrelevant data

from a single agent, which is used in the next section to develop

algorithms to remove irrelevant data from a group of agents.

Before proceeding, we need to take care of a technicality. Given

a team form F , it is sometimes possible to find an equivalent team

form F
′ such

∀α ∈ A, |I ′α| ≤ |Iα| but I
′
α ⊈ Iα.

To avoid such situations, we always start with a strict expansion of

the information structure of a team form.

5.1. Strict expansion of an information structure

The idea of a strict expansion of an information structure was

introduced in Witsenhausen (1975). An information structure is

strictly expanded if whenever an agent α knows the information

set of a control or system variable then it also knows the

corresponding control or system variable. Formally, we have the

following:

Definition 11 (Strictly Expanded Information Structure). An infor-

mation structure {In : n ∈ A ∪ M} is strictly expanded if for any

n ∈ A ∪M and α ∈ A such that In ⊂ Iα , we have that Xn ∈ Iα .

A team form can be strictly expanded by a simple iterative

procedure shown in Algorithm 1. The algorithm always converges

in a finite number of steps because N is finite. Thus, in the sequel

we make the following assumption:

Assumption (A1). The information structure of the team form is

strictly expanded.

a

b

Fig. 4. Two possible strict expansions of information structure of the team form

of Example 1. The thick lines denote the edges added as part of expanding the

information structure.

The information structure of Example 1 is not strictly expanded.

Its strict expansion using Algorithm1 is not unique and depends on

the order in which we proceed. Two possible strict expansions of

the team form of Fig. 3 are shown in Fig. 4.

The multiplicity of strict expansions is not a concern because

(i) the operation of strictly expanding a team form is idempotent;

and (ii) all strict expansions of a team form are equivalent. The first

property follows from construction and the second follows from

the proposition given below.

Proposition 2. Given any team form F , any strict expansion of the

information structure of F results in a team form that is equivalent

to F .

See Appendix A for proof.

5.2. Main result for single agent

Definition 12 (Dependent Cost). For any agent α ∈ A, let Kα ⊂ K

denote the cost terms that are influenced by the control actions Xα ,

that is,

Kα = {k ∈ K : Dk ∩
−→
X α ≠ ∅}.

Theorem 2 (Irrelevant Information at Single Agent). For α ∈ A and

Jα ⊂ Iα , the data {Xn; n ∈ Jα} is irrelevant for control at agent α if,

in the graphical model corresponding to the team form, Iα \ Jα ∪ {Xα}
D-separates Jα from Kα .
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Algorithm 2: SimplifyAtNode

input : Team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩

input : Agent α
output: Team form F

′

output: Irrelevant data Jα
begin

let Kα := {k ∈ K : Dk ∩
−→
X α ≠ ∅}

let Jα := GraphIrrelevant(F , Iα ∪ {α}, Kα)
Iα ← Iα \ Jα
return (F , Jα)

Proof. Arbitrarily fix the control policy g−α = {gα′ : α
′ ∈ A \ {α}}

of agents except agent α.

For any K ′ ⊂ K , define C(K ′) =


k∈K ′ c(XDk
) and decompose

the total cost as C(K) = C(Kα) + C(K \ Kα). Note that C(K \ Kα)
does not depend on Xα and hence on gα . Thus,

argmin
gα

E(g−α ,gα)[C(K)] = argmin
gα

E(g−α ,gα)[C(Kα)] (2)

which implies that to choose an optimal gα , agent α only needs to

consider the cost terms Kα .

Let Sα = Iα \ Jα . Suppose Jα is such that (Sα, α) D-separates Jα
from Kα . An immediate consequence of this D-separation is that

E(g−α ,gα)[C(Kα)|XIα , Xα] = E(g−α ,gα)[C(Kα)|XSα , Xα]. (3)

Now, we can combine (2) and (3) with Theorem 1 to complete

the proof as follows: Let

h(Xα, XSα ) = Eg−α [C(Kα)|XSα , Xα].

Eq. (2) implies that agent α is interested in minimizing

E(g−α ,gα)[C(Kα)] = E(g−α ,gα)



E(g−α ,gα)[C(Kα)|XIα , Xα]


(a)
= E(g−α ,gα)



Eg−α [C(Kα)|XIα , Xα]


(b)
= E(g−α ,gα)



Eg−α [C(Kα)|XSα , Xα]


(c)
= E(g−α ,gα)[h(Xα, XSα )]

= Eg−α [h(gα(XSα , XJα ), XSα )] (4)

where (a) follows from policy independence of conditional

expectation (Witsenhausen, 1975), (b) follows from (3), and (c)

follows from the definition of h(·). Now, Theorem 1 implies that to

minimize the RHS of (4), there is no loss of optimality in choosing

Xα as

Xα = gα(XSα ).

Hence, the data {Xn; n ∈ Jα} is irrelevant for control at agent α.

Theorem 2 suggests that given a team form F and an agent

α, if we identify a subset Jα ⊂ Iα such that (Iα \ Jα) ∪ {α}
D-separates Jα from the dependent cost Kα , then the team form

obtained by removing the edges {(m, α),m ∈ Jα} is a simplification

of F . This procedure is shown in Algorithm 2. Since this algorithm

is an implementation of Theorem 2, the output team form is a

simplification of the input team form.

In order to identify an appropriate subset Jα , any standard

graphical modeling algorithm for checking D-separation (or

identifying graphically irrelevant data) may be used. One such

algorithm is the Bayes ball algorithm (Shachter, 1998). This

algorithm, refined for the graphical model corresponding to the

team form, is presented in Algorithm 7 in Appendix B. We refer

to this algorithm as GraphIrrelevant.

Algorithm 3: SimplifyTeam (Initial Version)

input : Team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩

output: Team form F
′

begin

F ← StrictlyExpand(F )
repeat

let F
′ := F

forall α ∈ A do

(F , J)← SimplifyAtNode(F , α)

until F
′ = F

Fig. 5. Simplification of the team forms shown in Fig. 4. The thick lines denote the

edges that were added in the strict expansion of the team form.

To simplify a team form, we can apply Algorithm 2 at all agents.

We can iterate this step as long as we remove some edges at

each iteration. This procedure is shown in Algorithm 3. Since each

iteration simplifies the original team form, the final team form is

also a simplification of the input team form.

Using Algorithm 3 on either of the team forms shown in Fig. 4

gives the team form shown in Fig. 5. The information set of Qt is

{St ,Mt−1}, of Mt is {Qt ,Mt−1}, and of Ŝt is {Qt ,Mt−1}. Thus, the
structure of optimal encoder, decoder, and memory update is

Qt = et(St ,Mt−1), Ŝt = dt(Qt ,Mt−1), Mt = gt(Qt ,Mt−1)

which is equivalent to the result derived in Witsenhausen (1979).

6. Simplification at a group of agents

In this section we present algorithms to remove irrelevant data

from a group of agents. Recursively using this step leads to a

simplification of a team form. The key idea behind the algorithms

presented in this section is to use the idea of a coordinator

presented in Nayyar (2011) and Nayyar et al. (2013).

6.1. Common and local information

Given a subset H of agents in a team form F , we can split the

information sets of all agents α ∈ H into two parts: the common

information CH :=


α∈H Iα and the local information (or private

information) LH,α := Iα \ CH , α ∈ H . The common information is

the data known to all agents in H; in fact, it is common knowledge

(in the sense of Aumann (1976)) to all agents in H . The local

information at α is the data known at α but not known at every

other agent in H .
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Algorithm 4: CoordinatedTeam

input : Team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩

input : Group of agents H

output: Coordinated team form FH

output: Coordinator λH
begin

let λH = new node

let

(A∗, B∗,M∗,N∗) = (A \H ∪ {λH}, B,M ∪ A \H,N ∪ {λH})
let CH = ∩α∈H Iα
I∗λH ← CH

forall α ∈ H do

I∗α ← (Iα ∪ λH) \ CH

forall n ∈ A ∪M \ H do

I∗n ← In

FH ← ⟨(N
∗, A∗, B∗,M∗), {I∗n : n ∈ A∗ ∪M∗}, (K , {Dk : k ∈

K})⟩
return (FH , λH)

6.2. Coordinator for a group of agents

Given a team form F = ⟨(N, A, B,M), {In : n ∈ A ∪ M}, (K ,
{Dk : k ∈ K})⟩ and a subset H of agents, construct a coordinated

team form FH = ⟨(N
∗, A∗, B∗,M∗), {I∗n : n ∈ A∗ ∪ M∗}, (K ∗, {D∗k :

k ∈ K ∗})⟩with the following components:

(1) Variable structure: The coordinated team form FH has a new

agent, called the coordinator and denoted by λH ; the agents

in H are passive; and the system and primitive variables are

unchanged. Thus,

A∗ = (A \ H) ∪ {λH}, M∗ = M ∪ H, B∗ = B. (5)

(2) Information structure: The information set of the coordinator is

the common information in H , i.e.,

I∗λH = CH;

the information set of α ∈ H is the local information {Xn : n ∈
LH,α} and the coordinator’s action X∗λH , i.e.,

I∗α = LH,α ∪ {λH}, α ∈ H;

and the information set of all other variables remains

unchanged, i.e.,

I∗n = In, n ∈ A ∪M \ H.

(3) Cost structure: The cost structure of FH is the same as that of

F .

The procedure for obtaining a coordinated team form is shown

in Algorithm 4. In addition, for any team type T of F , a team type

TH of FH is obtained as follows:

(1) Measurable spaces: For n ∈ N∗ \ {λH}, (X
∗
n,F

∗
n ) = (Xn,Fn).

For n = λH , X
∗
λH

is a function valued random variable. The

measurable space (X∗λH ,F
∗
λH
) is given by

X
∗
λH
=



α∈H

Z
α
H

where Z
α
H , α ∈ H , is the space of measurable functions from

(XLH,α ,FLH,α ) to (Xα,Fα) and F
∗
λH

is the corresponding Borel

measure on the product of function spaces ZαH .

(2) Probability measure on primitive random variables remains

unchanged, i.e., Q ∗ = Q .

(3) System dynamics: For m ∈ M , the system dynamics are not

changed, i.e., f ∗m = fm. For m ∈ H , the system dynamics are

given by

f ∗m(X
∗
λH
, X∗LH,α ) = ZαH (X

∗
LH,α
)

where X∗λH = (Z
α
H : α ∈ H).

(4) Cost functions: The cost functions of TH are the same as those

of T .

While modeling the coordinated team as a DAG, we will

(1) Represent the coordinator XλH , by a vertex marked with full

diamond � and labeled with XλH (or, when clear from context,

by just λH ).
(2) Represent all agents Xα , α ∈ H by a vertex marked with an

empty circle and labeled with Xα . Call the collection of all

such vertices VH .
(3) Represent the remaining variables, N \ H , as earlier.

By construction, the out-neighborhood of XλH is VH , i.e.,

N+G (XλH ) = VH := {Xα : α ∈ H}.

The idea of a coordinator based on common information

was proposed in Nayyar (2011) and Nayyar et al. (2013). The

coordinated team form is useful for two reasons: (i) it is equivalent

to the original team form (see Proposition 3), and hence (ii) any

structural result for the coordinated team is also applicable to the

original (see Theorem 3). Thus, using the coordinated team, we can

extend any solution technique for identifying irrelevant data at a

single agent to a solution technique for identifying irrelevant data

at a group of agents.

Proposition 3. Given any sequential team (F , T ) and a subset H

of agents, let (FH , TH) be the corresponding coordinated sequential

team. Then for any policy g of (F , T ), there exists a policy gH of

(FH , TH) that achieves the same cost and vice versa, i.e., for any policy

gH of (FH , TH), there exists a policy g of (F , T ) that achieves the
same cost.

This is proved in Appendix C. The manner in which the

corresponding policies are constructed implies that if we prove

that a subset JH of CH is irrelevant for the coordinatorλH inFH , then

JH is also irrelevant for all α ∈ H in F . Using this correspondence,

we state the main result for a group of agents.

6.3. Main result for a group of agents

Theorem 3. Given a team form F and a subset H of agents A, let FH

be the corresponding coordinated team. Then, for any JH ⊂ CH , the

data {Xn : n ∈ JH} is irrelevant for control at all agents α ∈ H if, in

the graphical model corresponding to FH , CH \ JH ∪ {λH} D-separates
JH from KλH .

Proof. Let SH = CH \ JH . If (SH , XλH ) D-separates JH from KλH in the

graphical model corresponding toFH , then, by Theorem 2, the data

{Xn : n ∈ JH} is irrelevant for control at the coordinator in FH . By

the manner in the which the equivalent policy was constructed in

the proof of Proposition 3, the data {Xn : n ∈ JH} is irrelevant at all
agents in α ∈ H in F .

Theorem 3 suggests that to simplify a team form F at a group

of agents H , we should look at the coordinated team FH =
CoordinatedTeam(F ,H) and identify the irrelevant data JH at

the coordinator λH (using, for example, Algorithm 7). Then the

team form obtained by removing the edges {(m, α),m ∈ JH , α ∈
H} is a simplification of F . This procedure is implemented in

Algorithm 5.
To simplify a team form, we can apply Algorithm 5 at all subsets

of agents.We can iterate this step as long aswe remove some edges
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Algorithm 5: SimplifyAtGroup

input : Team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩

input : Group of agents H

output: Team form F
′

begin

let (FH , λH) := CoordinatedTeam(F ,H)
(FH , JH)← SimplifyAtNode(FH , λH)
forall α ∈ H do

Iα ← Iα \ JH
return F

Algorithm 6: SimplifyTeam (Final Version)

input : Team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩

output: Team form F
′

begin

F ← StrictlyExpand(F )
repeat

let F
′ := F

forall H subset of A do

F ← SimplifyAtGroup(F ,H)

until F
′ = F

at each iteration. This procedure is shown in Algorithm 6. Since

each iteration simplifies the original team form, the final team form

is also a simplification of the input team form.

Remark 2. (1) In Algorithm 6, we do not need to check all subsets

of agents. Rather, we only need to check subsets H for which

the common information CH ≠ ∅. Hence, instead of iterating

for all subsets of A in Algorithm 6, we only need to iterate over

subsets of A for which CH ≠ ∅.
(2) If for some H ⊂ A, CH = ∅ then for any H ′ such that H ⊂ H ′ ⊂

A, CH ′ = ∅. Thus, if we find any subset H for which CH = ∅,
we do not need to check H and any of its supersets. This can be

incorporated in the function to generate the subsets of A.

7. Examples

We present two examples that illustrate the algorithmic

procedure to remove irrelevant information.

7.1. Hierarchical control system

Consider a hierarchical control system that consists of three

interconnected subsystems. Controller 1 influences subsystems 1,

2, and 3; controller 2 influences subsystems 2 and 3; and

controller 3 influences subsystem 3.

Formally, let S it denote the state of subsystem i and U i
t denote

the control action of controller i. The initial states (S11 , S
2
1 , S

3
1) are

independent of each other and evolve according to

S1t+1 = f 1t (S
1
t ,U

1
t ,W

1
t ), S2t+1 = f 2t (S

2
t ,U

1
t ,U

2
t ,W

2
t ),

S3t+1 = f 3t (S
3
t ,U

1
t ,U

2
t ,U

3
t ,W

2
t ).

The information structures of the controllers are:

I1t = {S
1
1:t ,U

1
1:t−1}, I2t = {S

2
1:t ,U

1
1:t−1,U

2
1:t−1},

I3t = {S
3
1:t ,U

1
1:t−1,U

2
1:t−1,U

3
1:t−1}.

The control actions are chosen as follows:

U i
t = g i

t(I
i
t), i ∈ {1, 2, 3}.

The per-step cost is c(St ,Ut) where St = (S
1
t , S

2
t , S

3
t ) and Ut =

(U1
t ,U

2
t ,U

3
t ).

The optimization objective is to choose the control strategies

gi = (g i
1, . . . , g

i
T ), i ∈ {1, 2, 3} to minimize the expected cost

E(g1,g2,g3)



T

t=1 c(St ,Ut)



.

The team form corresponding to the above system is given by:

(1) Variable structure

• Control variables: XA = (U
1
1:T ,U

2
1:T ,U

3
1:T ).

• Primitive variables: XB = (S
1
1 , S

2
1 , S

3
1 ,W

1
1:T ,W

2
1:T ,W

3
1:T ).

• System variables: XM = (S
1
2:T , S

2
2:T , S

3
2:T ).

• All variables XN = XA ∪ XB ∪ XM .

(2) Information structure

• For any Xn = U1
t ∈ XM , In = {S

1
1:t ,U

1
1:t−1}.

• For any Xn = U2
t ∈ XM , In = {S

2
1:t ,U

1
1:t−1,U

2
1:t−1}.

• For any Xn = U3
t ∈ XM , In = {S

3
1:t ,U

1
1:t−1,U

2
1:t−1,U

3
1:t−1}.

• For any Xn = S1t ∈ XM , In = {S
1
t−1,U

1
t−1}.

• For any Xn = S2t ∈ XM , In = {S
2
t−1,U

1
t−1,U

2
t−1}.

• For any Xn = S3t ∈ XM , In = {S
3
t−1,U

1
t−1,U

2
t−1,U

3
t−1}.

(3) Cost structure

• Set of coupled costs K = {1, . . . , T }.
• For t ∈ K , Dt = {St ,Ut}.

The DAG corresponding to the above team form for horizon

T = 4 is shown in Fig. 6. For clarity, we have split the graph

into two parts. The first graph shows the information sets of

control variables and the second graph shows cost structure and

the information sets of system variables.

Let F0 denote the team form of Fig. 6. Using Algorithm 6 on the

above DAG proceeds as follows:

(1) F1 = SimplifyAtNode(F0,U
3
4 ). This removes the edges

between {S31 , S
3
2 , S

3
3} and U3

4 . The resultant team form is shown

in Fig. 7(a).

(2) F2 = SimplifyAtNode(F1,U
2
4 ). This removes the edges

between {S21 , S
2
2 , S

2
3} and U2

4 .

(3) F3 = SimplifyAtNode(F2,U
1
4 ). This removes the edges

between {S11 , S
1
2 , S

1
3} and U1

4 .

(4) F4 = SimplifyAtNode(F3,U
3
3 ). This removes the edges

between {S31 , S
3
2} and U3

3 .

(5) F5 = SimplifyAtNode(F4,U
2
3 ). This removes the edges

between {S21 , S
2
2} and U2

3 . The resultant team form is shown in

Fig. 7(b).

(6) F6 = SimplifyAtNode(F5,U
1
3 ). This removes the edges

between {S11 , S
1
2} and U1

3 .

(7) F7 = SimplifyAtNode(F6,U
3
2 ). This removes the edges

between {S31} and U3
2 . The resultant team form is shown in

Fig. 7(c).

(8) F8 = SimplifyAtNode(F7,U
2
2 ). This removes the edges

between {S21} and U2
2 .

(9) F9 = SimplifyAtNode(F8,U
1
2 ). This removes the edges

between {S11} and U1
2 . The resultant team form is shown in

Fig. 7(d).

In the team form F9, shown in Fig. 7(d), the information set

of U1
t is {S1t ,U

1
1:t−1}; of U2

t is {S2t ,U
1
1:t−1,U

2
1:t−1}; and of U3

t is

{S3t ,U
1
1:t−1,U

2
1:t−1,U

3
1:t−1}. Therefore, the structure of an optimal

controller is

U1
t = g1

t (S
1
t ,U

1
1:t−1), U2

t = g2
t (S

2
t ,U

1
1:t−1,U

2
1:t−1),

U3
t = g3

t (S
3
t ,U

1
1:t−1,U

2
1:t−1.U

3
1:t−1).
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a b

Fig. 6. A directed acyclic graph corresponding to the team form of a hierarchical control system. For clarity, we have split the edges into two graphs. The first graph shows

the information sets of the control variables while the second graph shows the cost structure and the information sets of the system variables.

7.2. One-step delayed state sharing

Consider two coupled subsystems with one step delayed state

sharing information structure (Aicardi, Davoli, & Minciardi, 1987).

The state S it of subsystem i, i = 1, 2, evolves according to

S it+1 = f it (St ,Ut ,W
i
t )

where St = (S
1
t , S

2
t ), Ut = (U

1
t ,U

2
t ), U

i
t denotes the control action

of controller i and W i
t is the process noise. The processes {W 1

t }
T
t=1

and {W 2
t }

T
t=1 are i.i.d. and independent of each other and of (S11 , S

2
1).

Each controller observes the state of its subsystem and the one-

step delayed state of the other subsystem; it chooses a control

action according to

U i
t = g i

t(S
i
t , S1:t−1).

The optimization problem is to choose the control strategies g1 =
(g1

1 , . . . , g
1
T ) and g2 = (g2

1 , . . . , g
2
T ) to minimize the expected cost

E(g1,g2)


T



t=1

c(St ,Ut)



.

The team form corresponding to the above system is given by:

(1) Variable structure

• Control variables: XA = (U
1
1:T ,U

2
1:T ).

• Primitive variables: XB = (S
1
1 , S

2
1 ,W

1
1:T ,W

2
1:T ).

• System variables: XM = (S
1
2:T , S

2
2:T ).

• All variables XN = XA ∪ XB ∪ XM .

(2) Information structure

• For any Xn = U i
t ∈ XA, In = {S

i
t , S1:t−1}.

• For any Xn = S it ∈ XM , In = {St−1,Ut−1}.

(3) Cost structure

• Set of coupled costs K = {1, . . . , T }.

• For t ∈ K , Dt = {St ,Ut}.

The DAG corresponding to the above team form for horizon

T = 4 is shown in Fig. 8. For clarity, we have split the graph

into two parts. The first graph shows the information sets of

control variables and the second graph shows cost structure and

the information sets of system variables.

Let F0 denote the team form of Fig. 8. Using Algorithm 6 on the

above DAG proceeds as follows:

(1) F1 = StrictlyExpand(F0). The strict expansion of F0 gives

a team form F1 shown in Fig. 9(a).

(2) F2 = SimplifyAtGroup(F1,H1) where H1 = {U
1
4 ,U

2
4 }. In

the corresponding coordinated team formFH1
, which is shown

in Fig. 9(b), the set {S13 , S
2
3 ,U

1
3 ,U

2
3 , λH1

} D-separates JH1
=

{S11:2, S
2
1:2,U

1
1:2,U

2
1:2} from KH1

= {c4}. Removing the edges

from JH1
to λH1

in FH1
gives the team form shown in Fig. 9(c);

removing them inF1 gives the team formF2 shown in Fig. 9(d).

(3) F3 = SimplifyAtGroup(F2,H2) where H2 = {U
1
3 ,U

2
3 }.

In the corresponding coordinated team form FH3
, which is

shown in Fig. 9(e), the set {S12 , S
2
2 ,U

1
2 ,U

2
2 , λH2

} D-separates

JH2
= {S11 , S

2
1 ,U

1
1 ,U

2
1 } from KH3

= {c3, c4}. Removing the edges

from JH2
to λH2

in FH2
gives the team form shown in Fig. 9(f);

removing them inF2 gives the team formF3 shown in Fig. 8(c).

In the team formF3, shown in Fig. 8(c), the information set ofU i
t

is {S it , St−1,Ut−1}. Therefore, the structure of an optimal controller

is

U i
t = g i

t(S
i
t , St−1,Ut−1)

which is equivalent to the structural result derived in Aicardi et al.

(1987).

8. Conclusion

In this paper, we present an algorithmic framework to identify

irrelevant data in sequential teams. Our results depend only on the

information structure and the cost coupling but do not depend on

the specifics of the state spaces, probability measure, dynamics,

and the cost function.
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(a) F1 . (b) F4 .

(c) F7 . (d) F9 .

Fig. 7. Intermediate team forms obtained in the simplification of the team form of Fig. 6.

a b c

Fig. 8. A directed acyclic graph corresponding to the team form of decentralized control system with one-step delayed state sharing. For clarity, we have split the edges

into two graphs: (a) the information sets of the control variables; (b) the cost structure and the information sets of the system variables. (c) shows the simplified team form

obtained by using Algorithm 6.

The key idea behind the proposed algorithms is the following. A
subset of data available to an agent is irrelevant only if appropriate
conditional independence conditions hold. To algorithmically
identify such irrelevant data, we model a sequential team using
a graphical model. Then, checking for conditional independence

is equivalent to checking D-separation in the corresponding
graphical model, which may be verified using standard graphical
modeling algorithms.

Once irrelevant data is identified, it may be removed without
any loss of optimality. Removing data available to an agent is



A. Mahajan, S. Tatikonda / Automatica 61 (2015) 0–13 11

(a) F1 . (b) FH1
. (c) Simplification of FH1

.

(d) F2 . (e) FH2
. (f) Simplification of FH2

.

Fig. 9. Intermediate team forms obtained in the simplification of the team form of Fig. 8.

equivalent to removing corresponding edges from the graphical

model. We propose algorithms that sequentially remove edges

from agents and groups of agents until no further edges can be

removed.

The complexity of the proposed algorithm is proportional to the

number of groups of agents that have non-empty common infor-

mation. Thus, the algorithms run faster on systemswhere less data

is shared between the agents i.e., the degree of decentralization is

large. However, in the worst case, the complexity is exponential in

the number of agents.

Whenwemodel a specific decentralized control system as a se-

quential team, as in Example 1 and Section 7, the number of agents

increases linearly with time horizon. However, for the purpose of

identifying irrelevant information, a short horizon (typically T = 4

or 5) is sufficient. This is because, effectively, we can use the steps

of the algorithm to construct a backward induction based proof.

For example, in the simplification presented in Fig. 9, the simplifi-

cation at T = 4may be thought of as the basis of induction, and the

simplification at T = 3 and T = 2 may be thought of as induction

steps. The horizon of the problemneeds to large enough so that the

‘‘induction-step’’ is included in the simplification.

The algorithm described in this paper only identifies structural

results that remove irrelevant information at the agents. Extending

these algorithms to identify sufficient statistic of data available at

the agents is an important future direction.
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Appendix A. Proof of Proposition 2

Let F
′ = StrictlyExpand(F ). Denote the series of team

forms created by Algorithm 1 in going from F to F
′ by

Fℓ = {(N, A, B,M), {I
ℓ
n , n ∈ A ∪M}, (K , {Dk, k ∈ K})},

for ℓ = 0, . . . , L, where F0 = F , FL = F
′ and Fℓ+1 is obtained by

expanding Fℓ around (αℓ, nℓ), that is, for ℓ = 0, . . . , L, n ∈ A ∪M ,

Iℓ+1n =



Iℓn , n ≠ αℓ,
Iαℓ ∪ {Xnℓ}, n = αℓ.

To show thatF
′ is equivalent toF it suffices to prove thatFℓ+1

is equivalent to Fℓ, ℓ = 0, . . . , L − 1. Since Fℓ and Fℓ+1 have
the same variable and cost structure, they are equivalent if for any
choice of team type T , (Fℓ, T ) and (Fℓ+1, T ) have the same value.

By construction, Fℓ and Fℓ+1 have the same variable and cost
structure and the same information sets for system dynamics.
Thus, to prove equivalence between Fℓ and Fℓ+1 all we need to
show is that for any choice of team type T , the teams (Fℓ, T ) and
(Fℓ+1, T ) have the value.

Consider a policy g′ = {g ′α : α ∈ A} of (Fℓ+1, T ). Since
Inℓ ⊂ Iαℓ , Xnℓ may be written as ψ(Iαℓ; g

′) for some function ψ .

Now, consider a policy g = {gα : α ∈ A} of (Fℓ, T ) such that

gα(Iα) =



g ′α(Iα), α ≠ αℓ
g ′αℓ(Iαℓ , ψ(Iαℓ; g

′)), α = αℓ.
(A.1)

By construction, for any realization of the primitive random
variables {Xβ : β ∈ B}, using the policy g given by (A.1) in (Fℓ, T )
leads to the same realization of system and control variables (Xn :
n ∈ A ∪M) as those by using policy g′ in (Fℓ+1, T ). Therefore, the
value of (Fℓ, T ) is at least as small as the value of (Fℓ+1, T ). But
by construction, any policy of (Fℓ, T ) is also a policy of (Fℓ+1, T ).
Hence, the value of (Fℓ+1, T ) is at least as small as the value
of (Fℓ, T ). Hence, (Fℓ, T ) and (Fℓ+1, T ) have the same value.
Therefore, Fℓ and Fℓ+1 are equivalent, and so are F0 = F and
FL = F

′.



12 A. Mahajan, S. Tatikonda / Automatica 61 (2015) 0–13

Algorithm 7: GraphIrrelevant (the Bayes Ball Algorithm)

input : Team form F = ⟨(N, A, B,M), {In : n ∈
A ∪M}, (K , {Dk : k ∈ K})⟩

input : Observed data O

input : Target Set T

output: Irrelevant data O′

begin

let (V , S, R∗, R
∗, P∗, P

∗) = (∅, T , T ,∅,N,N)
while S ≠ ∅ do

Pick s ∈ S

(V , S)← (V ∪ {s}, S \ {s})
if s ∈ R∗ then

if s ∈ O then

// Do nothing. The ball is blocked

else

// Pass the ball through
if s ∈ P∗ then

P∗ ← P∗ \ {s}

S ← S ∪ N−G (s)

if s ∈ B ∩ P∗ then

P∗ ← P∗ \ {s}

S ← S ∪ N+G (s)

if s ∈ R∗ then

if s ∈ O then

// Bounce back the ball
if s ∈ P∗ then

P∗ ← P∗ \ {s}

S ← S ∪ N−G (s)

else

// Pass the ball through
if s ∈ P∗ then

P∗ ← P∗ \ {s}

S ← S ∪ N+G (s)

return O \ V

Appendix B. Bayes ball algorithm for identifying graph irrele-

vant nodes

The Bayes ball algorithm (Shachter, 1998) checks for D-

separation in a graphical model and identifies graphically

irrelevant nodes. For the sake of completeness, we present here

the algorithm refined to the graphical model corresponding to the

team form.
Given a team form F , a target set T and an observation set O,

we want to identify a subset O′ ⊂ O such that O \ O′ D-separates
O′ from T . (In Algorithm 2, T corresponds to dependent costs Kα
and O corresponds to information set Iα .) Broadly speaking, the

Bayes ball algorithm works by sending bouncing balls from each

node in T into the network until they are absorbed in I . The ball

passes through (from any parent to all children; from any child

to all parents) the unobserved system dynamic and control nodes

(i.e., nodes in A∪M\O). The ball bounces back (from any child to all

children) from the unobserved primitive variable nodes (i.e., nodes

in B \O). For the observed nodes (i.e., nodes in O), the ball bounces

back if it comes from the parents (to all parents) but is blocked if it

comes from the children. Once all balls have been blocked, the set

O′ is the subset of O that has not been hit by a ball.
The precise algorithm is shown in Algorithm 7. We need to

keep track of visited nodes to avoid repetitions. In the algorithm,

V denotes the set of visited nodes, S the set of nodes that have

received a ball but not passed or blocked it, R∗ the set of nodes that

have received a ball from their children, R∗ the set of nodes that

have received a ball from their parents, P∗ the set of nodes that

have not passed a ball to their children, and P∗ the set of nodes

that have not passed a ball to their parents. Note that P∗ and P∗ can

overlap.

Appendix C. Proof of Proposition 3

Consider any policy g = (gα : α ∈ A) of (F , T ). Construct a
policy gH = (g

∗
α : α ∈ A∗) of (FH , TH) as follows: for all α◦ ∈ A∗,

g∗α◦ =



gα◦ α◦ ∈ A \ H,
(ψα

H : α ∈ H), α◦ = λH

where ∀α ∈ H ,

ψα
H :



XCH ,FCH



→





XLH,α ,FLH,α



→ (Xα,Fα)



is given by ψα
H (·) = gα(·, XCH ), where gα(·, XCH ) is a partial evalu-

ation of gα . By construction, gH induces the same joint distribution

on {Xn : n ∈ N∗ \ {λh}} in (FH , TH) as g induces on {Xn : n ∈ N}
in (F , T ). This same joint distribution and the identical cost struc-

ture ofF andFH imply that g and gH yield the same expected cost.

Analogously, consider any policy gH = (g∗α : α ∈ A∗) of

(FH , TH). Construct a policy g = (gα : α ∈ A) of (F , T ) as follows:

for all α◦ ∈ A,

gα◦ =



g∗α◦ α◦ ∈ A \ H,
g
α◦
λH
(XCH )(XLH,α ), α ∈ H

where gαλH is the α-component of gλH . Again, by construction, g

induces the same joint distribution on {Xn : n ∈ N} in (F , T )
as gH induces on {Xn : n ∈ N∗ \ {λh}} in (FH , TH). This same joint

distribution and the identical cost structure ofF andFH imply that

gH and g yield the same expected cost.
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