
On-Time Diagnosis of Discrete Event Systems
Aditya Mahajan and Demosthenis Teneketzis

Department of EECS, University of Michigan, Ann Arbor, MI – 48109, USA.

¶adityam,teneket♦@eecs.umich.edu

Abstract— A formulation and solution methodology for on-

time fault diagnosis in discrete event systems is presented. This

formulation and solution methodology captures the timeliness

aspect of fault diagnosis and is therefore different from all other

approaches to fault diagnosis in discrete event systems which are

asymptotic in nature. A monitor observes a projection of the

events that occur in the system. After each observation it can

either raise an alarm and shut down the system or allow the

system to continue. If the system is stopped when no fault had

occurred, a false alarm penalty is incurred; on the other hand

if a fault had occurred, a delayed detection penalty is incurred.

Both these penalties are trace dependent. The on-time diagno-

sis problem is formulated as a minimax optimization problem

where the objective is to choose a monitoring rule which min-

imizes the worst case cost along all traces of the language de-

scribing the discrete event system. An optimal diagnosis rule is

determined using a dynamic programming algorithm. An ex-

ample is presented which illustrates our methodology and high-

lights the difference between our formulation of on-time diag-

nosis with existing results on asymptotic diagnosis of discrete

event systems.

I. Introduction

Fault diagnosis is important in many applications such as

transportation systems [1], power systems [2], HVAC (heat-

ing ventilation and air-conditioning) systems [3, 4] other in-

dustrial systems [5]–[8], and communication networks [9]–

[14]. Fault diagnosis can be formulated in two different

ways: (i) asymptotic fault diagnosis; and (ii) on-time fault

diagnosis. In asymptotic fault diagnosis the objective is to

determine, as accurately as possible, the occurrence of faults;

the delay in fault diagnosis is not critical. On the other hand,

on-time fault diagnosis is concerned with situations where the

timeliness of fault detection is important. Within the context

of discrete event systems, asymptotic fault diagnosis has been

investigated in [15]–[24], [25] and references therein. To the

best of our knowledge, on-time fault diagnosis has not been

addressed so far within the context of DES. In this paper we

formulate the on-time diagnosis problem in DES and provide

a solution methodology.

The rest of the paper is organized as follows. In Section II

we introduce some preliminary notation used in the rest of

the paper. In Section III we formulate and solve the on-time

diagnosis problem. In Section IV we present an example

illustrating our solution methodology. We conclude in Sec-

tion V.

II. Preliminaries

A. Languages

Let Σ denote a set of events. A language defined over Σ

is a set of finite-length strings from events in Σ. Σ∗ denotes

the Kleene-closure of Σ, that is, the set of all finite strings

of elements of Σ, including the empty string ε. The symbol

· denotes the concatenation operation. If t · u = s with

t, u ∈ Σ∗, then t is called the prefix of s and is denoted by

t ≺ s. Observe that both s and ε are prefixes of s.

The prefix closure L̄ of L consists of all the prefixes of

all the strings in L. A language is called prefix closed if any

prefix of any string in L is also an element of L.

For any string s belonging to language L, the post lan-

guage L after s, denoted by L/s, is given by

L/s := ¶t ∈ Σ : s · t ∈ L♦

For any sub-language L′ of L, the post-language L after L′

is given by

L/L′ =
⋃

s∈L′

L/s

A string s belonging to L is called a terminal string if

the post language L after s is empty (i.e., L/s = ∅). Any

language L can be partitioned into the set LT of terminal

strings and the set LNT of non-terminal strings, i.e.,

L = LT ∪ LNT ,

where LT := ¶s ∈ L : L/s = ∅♦ and LNT := L \ LT . If L

is prefix-closed, then

LNT = L̄T \ LT .

For example, consider a language L defined over Σ =

¶a, b, c♦ given by

L := ¶ε, a, b, ab, ac, aa, ba, bb, bc♦ , (1)

then

LT = ¶ab, ac, aa, ba, bb, bc♦ and LNT = ¶ε, a, b♦

B. Prefix-preserving projections

Consider a prefix-closed langauge L, and a set valued func-

tion O : LNT → 2Σ. For any string s ∈ L, O(s) denotes the

observable set of observable events immediately following s.

This function O defines a projection P as follows: for any

σ ∈ Σ, and any s · σ ∈ L,

Proceedings of the 9th International
Workshop on Discrete Event Systems
Göteborg, Sweden, May 28-30, 2008

FrM1.3

978-1-4244-2593-8/08/$25.00 ©2008 IEEE 382

P (ε) := ε,

P (σ) :=

{

σ, if σ ∈ O(ε);

ε, otherwise,

P (s · σ) :=

{

P (s) · σ, if σ ∈ O(s);

P (s), otherwise.

The projected language P (L) is the set of projections of all

strings of L, i.e.,

P (L) := ¶P (s) : s ∈ L♦ .

By construction, the projected language is prefix-closed;

hence, we call such projections prefix-preserving projections.

The inverse projection P−1 is a map from P (L) to 2L de-

fined as follows

P−1(t) := ¶s ∈ L : P (s) = t♦ .

These projections are a generalization of the natural pro-

jections. In this paper we do not restrict ourselves to natural

projections, because, in the future, we want to investigate

on-time diagnosis of decentralized systems with communi-

cation. In such systems, communication rules can be trace

dependent; so, it is necessary to understand diagnosis in cen-

tralized systems with such projections.

C. Some sub-languages and inverse mappings

We define some sub-languages of L and some inverse map-

pings from P (L) to 2L that will be useful in future analysis.

Definition 1: Define sub-languages LCNT , LC of L as fol-

lows:

LCNT := ¶s · σ ∈ LNT : σ ∈ O(s)♦ ,

LC := LCNT ∪ LT

Definition 2: Define inverse maps QT , Q from P (L) to

2L as follows:

QT (t) := ¶s ∈ LT : t = P (s)♦ ,

Q(t) := ¶s · σ ∈ L : σ ∈ O(s) and t = P (s · σ)♦ .

Notice that QT (t) denotes the set of terminal strings of the

language that give projection t; Q(t) denotes the set of strings

of the language that give projection t and whose last event

is observable.

We illustrate the concepts introduced in Sections B and C

by means of the following example.

D. An example

Consider the language L defined in (1). Let the observable

events O be given by:

O(ε) = ¶a♦ , O(a) = ∅, and O(b) = ¶a, b♦ . (2)

This observation function is illustrated in Figure 1. Notice

that the set of observable events is trace-dependent. After

ε the event b is not observable, but it is observable after b.

Further, the projections are given by

a b c

a

a b c

b

Fig 1. A graphical representation of the language L

of (1) and the observable events given by (2). An ob-

servable event is denoted by a solid line and an unob-

servable event by a dashed line.

P (ε) = ε, P (a) = a, P (b) = ε,

P (aa) = P (ab) = P (ac) = a,

P (ba) = a, P (bb) = b, and P (bc) = ε. (3)

The projected language P (L) = ¶ε, a, b♦, and the inverse

projection P−1 is given by

P−1(ε) = ¶ε, b, bc♦ , P−1(a) = ¶a, ab, aa, ab, ac, ba♦ ,

and P−1(b) = ¶bb♦ .

The sub-languages LCNT and LC are given by:

LCNT = ¶a♦ and LC = ¶a, aa, ab, ac, ba, bb, bc♦ .

The mappings QT and Q are given by:

QT (ε) = ∅, QT (a) = ¶aa, ab, ac, ba♦ , QT (b) = ¶bb♦ ,

and

Q(ε) = ¶ε♦ , Q(a) = ¶a, ba♦ , Q(b) = ¶bb♦ .

III. The on-time diagnosis problem

A. The model

We consider a dynamic system represented by a prefix-

closed language L over an event set Σ. In this paper we

restrict attention to finite and bounded languages (i.e., the

language has finite number of strings, and the length of each

string in the language is bounded.) Suppose Σf ⊂ Σ is the

set of fault event. An observer, which we call the monitor,

observes a prefix-preserving projection P with an observa-

tion function O. The monitor has to ascertain whether a

fault has occurred in the system or not. After taking each

observation it can raise an alarm, in which case the system is

shut down, or it can decide to do nothing, in which case the

system continues to operate. The rule used to decide when

to raise an alarm is called a monitoring rule and is a function

from P (L) to ¶0, 1♦, where 0 means monitor does not raise

an alarm and 1 means that the monitor raises an alarm.

When an alarm is raised, the system is shut down imme-

diately and cannot execute any other event. This statement

can best be explained by an example. Consider the language

shown in Figure 2a. Suppose on observing ba the monitor

decides to raise an alarm. Note that P (L) = ¶ε, b, ba, bac♦,
P−1(ba) = ¶ba, baa, bab, bac, bba, bbaa, bbab♦, andQ(ba) =

¶ba, bba♦. All strings in P−1(ba) lead to the observation a.

383

a

c

a

c

b c

a

c

a

c

b

a

b

b

a

a

b

b

(a) (b)

Fig 2. (a) A language L,

(b) monitored sub-language L|
g
.

However, the moment the monitor observes a after b, the

system has to be in strings in Q(ba). The monitor raises an

alarm and the system is shut down immediately. So, when

the system stops, it would be in one of the strings in Q(ba).

The strings belonging to P−1(ba)\Q(ba) are never reached.

For any monitoring rule, the system will always stop in a

string belonging to LC .

A monitoring policy g : P (L) → ¶0, 1♦ restricts the lan-

guage L to a sub-language. We call this restricted language

the monitored sub-language and denote it by L♣g . For the

language shown in Figure 2a, the monitoring rule g given by

g(ba) = 1, g(ε) = g(b) = g(bac) = 0 gives the monitored

sub-language shown in Figure 2b.

We now want to define a metric to measure the quality

of a monitoring rule. We want this metric to capture the

notion of “timeliness of fault diagnosis”. In order to define

such a metric we first introduce a cost function C(·) on all

strings in LC . For strings belonging to LCNT , if the string

contains a fault, the cost corresponds to the damage done by

allowing the system to run in a faulty state; if the string does

not contain a fault, the cost corresponds to the false alarm

penalty. For strings belonging to LT , if the string contains a

fault, the cost corresponds to the damage done by allowing

the system to complete all its tasks in a faulty state; if the

(terminal) string does not contain a fault, the cost is zero.

The choice of the cost function C depends on the appli-

cation. For example, consider a system where we want to

detect a fault as soon as possible after its occurrence (i.e.,

after as few as possible events have occurred after the fault)

and the false alarm penalty is fixed. In this situation, sup-

pose the system is stopped after a non-terminal trace s has

occurred: if s does not contain a fault, the cost is equal to

the false alarm penalty; if s contains a fault, the cost is pro-

portional to the number of events that have occurred after the

fault. If the system is not-stopped and executes a terminal

trace s, then if s does not contain a fault the cost is zero; if

s contains a fault the cost is proportional to the number of

events that have occurred after the fault plus a fixed penalty

accounting for not stopping a faulty system. Thus the cost

function C is: for s ∈ LCNT

C(s) =

{

c · (n− τ(s)), if s contains a fault

HNT , otherwise

for sinLC \ LCNT

C(s) =

{

c · (n− τ(s)) +HT , if s contains a fault

0, otherwise

where τ(s) denotes the first time a fault occurs in string s, c

is a constant, HNT is the false alarm penalty, and HT is the

terminal penalty.

Now, the performance of a monitoring rule can be quan-

tified by the worst case cost when the system stops (either

shut down due to an alarm, or finishes all its tasks) and is

given by

J (g) := max
s∈(L♣g)T

C(s). (4)

B. Problem formulation and solution

We are interested in the following optimization problem.

Problem 1 (The on-time diagnosis problem): Given a

prefix-closed, finite and bounded language L, a prefix-

preserving projection P with an observation function O, and

a cost function C defined on LC , choose a monitoring rule

g∗ belonging to the family G of all functions from P (L) to

¶0, 1♦, which minimizes the worst case cost given by (4), i.e.

J (g∗) = J ∗ := min
g∈G

max
s∈(L♣g)T

C(s). (5)

Since there are only a finite number of monitoring rules,

Problem 1 is well defined and an optimal rule always exists.

Problem 1 is a centralized minimax optimization problem

and can be solved by dynamic programming. An optimal

solution can be obtained as follows.

Theorem 1: An optimal monitoring rule for Problem 1

can be obtained by solving the following set of recursive

equations.

∀t ∈ (P (L))T,

V (t) = min
{

max
s∈Q(t)

C(s), max
s∈QT (t)

C(s)
}

(6)

∀t ∈ (P (L))NT ,

V (t) = min
{

max
s∈Q(t)

C(s),

max
{

max
s∈QT (t)

C(s), max
e∈OC(t)

V (t · e)
}

}

,(7)

where OC(t) := ¶e ∈ Σ : t · e ∈ P (L)♦. Furthermore, an

optimal monitoring rule is described as follows: ∀t ∈
(P (L))T ,

g∗(t) =

{

1, if maxs∈Q(t) C(s) < maxs∈QT (t) C(s),

0, otherwise,

(8)

384

and ∀t ∈ (P (L))NT ,

g∗(t) =

{

1, if A < B

0, otherwise.
(9)

where

A = max
s∈Q(t)

C(s)

B = max
{

max
s∈QT (t)

C(s), max
s∈e∈OC(t)

V (t · e)
}

.

The recursive equations (6) and (7) have the following

interpretation:

Eq (6):For terminal strings t, calculate the worst cost of stop-

ping (i.e., maxs∈Q(t) C(s)) and the worst cost of con-

tinuing (i.e., maxs∈QT (t) C(s)) and choose the action

which incurs the smaller cost.

Eq (7):For non-terminal strings t, calculate the worst cost

of stopping (i.e., maxs∈Q(t) C(s)) and the worst cost

of continuing which is computed as follows: if the

monitor allows the system to continue, the trace that

is being executed may (a) terminate before the mon-

itor obtains another observation, or (b) its continua-

tion may lead to another observation. The worst cost

for (a) is maxs∈QT (t) C(s), the worst cost for (b) is

maxe∈OC(t) V (t·e). The maximum of these two costs

gives the worst cost of continuing. The monitor takes

the action (stop or continue) that incurs the smaller

cost.

Proof of Theorem 1. We first establish the following

three lemmas.

Lemma 1: Let J(t; g) denote the worst case continuation

cost after the monitor has observed t and is using the moni-

toring rule g. Then ∀t ∈ ((P (L))T ,

J(t; g) =

{

maxs∈Q(t) C(s), if g(t) = 1,

maxs∈QT (t) C(s), if g(t) = 0,
(10)

and ∀t ∈ ((P (L))NT , if g(t) = 1

J(t; g) = max
s∈Q(t)

C(s),

while ∀t ∈ ((P (L))NT , if g(t) = 0

J(t; g) = max
{

max
s∈QT (t)

C(s), max
e∈OC(t)

J(t · e; g)
}

Lemma 2: For any monitoring rule g and any t ∈ P (L♣g),

J(t; g) ≥ V (t) (11)

Lemma 3: The monitoring rule g∗ defined by (8) satisfies

J(t; g∗) = V (t) (12)

The above three lemmas are proved in Appendix A. Ob-

serve that for any monitoring rule g, ε ∈ P (L♣g) and

J (g) = J(ε; g). Therefore, Lemmas 2 and 3 imply that

for any monitoring policy g,

J (g∗) = J(ε; g∗) ≤ J(ε; g) = J (g). (13)

Thus, g∗ is an optimal monitoring rule. �

IV. An example

In this section we one language with three instances of cost

functions. These instances capture the scenarios with high

penalty for false alarm, and high penalty for delayed detec-

tion, and the scenario where a catastrophic event can occur.

For each of these three instances we find an optimal mon-

itoring rule. The details of the computations are available

at [26].

C1

C3

C7

C11

d

c

a

b

C4

C8

a

C5

d

a

d

a

f

C2

C6

C9

C10

a

a

a

b

a

Fig 3. An example of on-time diagnosis problem. The

event f denotes the fault event. The projection in this case

is a natural projection where events a and c are observable,

while events b, d, and f are unobservable.

Consider the language shown in Figure 3. The projection

is a natural projection where events a and c are observ-

able while events b, d, and f are unobservable. The event

f is a fault event. Thus, the observed language P (L) is

¶ε, a, aa, aaa, aac, aaaa♦. There are 11 strings that belong

to LC ; we denote the cost of stopping at these strings by Ci
as shown in Figure 3. We consider the following instances

for the cost functions.

Instance 1 (High false alarm penalty): Suppose the costs

for the language of Figure 3 are C1 = 1, C2 = 10, C3 =

C4 = 3, C5 = 4, C6 = 10, C7 = C8 = 4, C9 = C10 =

10, and C11 = 5. The cost of stopping at non-faulty states

(a, aba, abaa, and abaaa) is much higher than the cost of

stopping at other states, thus, these costs corresponds to a

situation where the false alarm penalty is high. The optimal

monitoring rule in this case is

g(ε) = g(a) = g(aa) = g(aaa) = g(aaaa) = 0

g(aac) = 1

Due to the high false alarm penalty, the monitor does not stop

the system until it is sure that a fault has occurred. In general,

if the false alarm penalty is infinite, optimal monitoring rule

would be the same as the asymptotic diagnoser of [15].

Instance 2 (High penalty of delayed detection): Suppose

385

the costs for the language of Figure 3 are C1 = 10, C2 = 1,

C3 = C4 = 11, C5 = 12, C6 = 1, C7 = C8 = 12, C9 =

C10 = 1, C11 = 13. These cost correspond to a situation

where the delayed detection penalties are much higher than

false alarm penalties. The optimal monitoring rule in this

case is

g(ε) = g(aaa) = g(aaaa) = 0

g(a) = g(aa) = g(aac) = 1

Due to the high delayed detection penalty, the monitor raises

an alarm and stops the system as soon as there is a possibility

that a fault could have occurred.

Instance 3 (Catastrophic event): Suppose the costs for the

language of Figure 3 are C1 = 1, C2 = 10, C3 = 2, C4 = 4,

C5 = 100, C6 = 10, C7 = 3, C8 = 12, C9 = 10, C10 = 15,

C11 = 12. These costs correspond to a situation when the

occurrence of two d events after a fault are catastrophic. The

optimal monitoring rule in this case is

g(ε) = g(a) = g(aaaa) = 0

g(aa) = g(aaa) = g(aac) = 1

Due to the catastrophic nature of fadad, the monitor raises

an alarm when there is a possibility that continuing the sys-

tem could lead to the catastrophic string.

V. Conclusion

We have formulated and solved a fault diagnosis problem

within the context of discrete event models. Our formulation

takes into account the timeliness of fault diagnosis. The key

idea in the formulation is to penalize false alarm as well

as the string-dependent amount of delay in fault detection.

With these penalties the on-time diagnosis problem can be

formulated as a minimax optimization problem. We provided

an algorithm for the solution of this problem and illustrated

via examples the nature of the solution and its differences

from the solution of the “asymptotic fault diagnosis problem”

that has appeared in the literature.

Acknowledgements

This research was supported in part by NSF Grant CCR-

0325571.

Appendix A. Proof of the three lemmas

1. Proof of Lemma 1

If g(t) = 1, then an alarm is raised and the system is shut-

down. The system can have executed any of the strings in

Q(t) when the last event in t is observed. So, the worst case

continuation cost is the maximum cost incurred amongst all

strings in Q(t). Thus,

J(t; g) = max
s∈Q(t)

C(s), when g(t) = 1. (14)

If g(t) = 0 then the monitor allows the system to continue.

If t ∈ ((P (L))T , then the monitor will not see any other event

in the future. The system will ultimately stop in one of the

strings in QT (t) and will incur a corresponding cost. Thus,

the worst case continuation cost in this case is

J(t; g) = max
s∈QT (t)

C(s), when g(t) = 0 and t ∈ (P (T))T .

(15)

If t ∈ (P (L))NT , the system may either end up in a ter-

minal string in QT (t), in which case the monitor will not see

anything in the future, or the system will not end in QT (t),

in which case the monitor will observe some event in OC(t)

in the future. So, the worst case continuation cost in this

case is the higher of these costs, hence

J(t; g) = max
{

max
s∈QT (t)

C(s),

max
{

max
s∈QT (t)

C(s), max
e∈OC(t)

V (t · e)
}

}

when g(t) = 0 and t ∈ (P (L))NT . (16)

Equations (14), (15), and (16) complete the proof of the

lemma.

2. Proof of Lemma 2

Partition P (L♣g) into disjoint sets M0, M1, . . . such that

M0 =
{

t ∈ (P (L♣g))T
}

M1 =
{

t ∈ (P (L♣g))NT : ∃σ1 ∈ Σ

such that t · σ1 ∈ (P (L♣g))T
}

· · · = · · ·

Mi =
{

t ∈ (P (L♣g))NT : ∃σ1, · · · , σi ∈ Σ

such that t · σ1 · · ·σi ∈ (P (L♣g))T
}

Note that by construction, for all t ∈ Mi, i 6= 0, g(t) = 0.

We want to show that for all t ∈ P (L♣g)

J(t; g) ≥ V (t) (17)

We will show this by induction on the sets Mi. For t ∈M0,

J(t; g) = max
s∈Q(t)

C(s) or max
s∈QT (t)

C(s)

≥ min
{

max
s∈Q(t)

C(s), max
s∈QT (t)

C(s)
}

=: V (t) (18)

This is the basis for induction. Now assume that for all

t ∈ M0 ∪ · · · ∪Mi, (17) is true. We will show that (17)

is also true for all t ∈ Mi+1. If Mi+1 = ∅, the claim is

a vacuous truth. Otherwise, consider t ∈ Mi+1. As noted

above g(t) = 0. Thus,

J(t; g) = max
{

max
s∈QT (t)

C(s), max
e∈OC(t)

J(t · e; g)
}

Observe that for all e ∈ OC(t), t ·e belongs toM0∪· · ·∪Mi.
By the induction hypothesis J(t · e; g) ≥ V (t · e). Thus,

386

J(t; g) = max
{

max
s∈QT (t)

C(s), max
e∈OC(t)

J(t · e; g)
}

≥ max
{

max
s∈QT (t)

C(s), max
e∈OC(t)

V (t · e)
}

=: V (t) (19)

Thus, by the principle of induction, the lemma is true.

3. Proof of Lemma 3

This lemma can be proved along the same lines as the

proof of Lemma 2. By the definition of g∗(t), the relation

of (18) holds with equality. As a consequence of this, the

relation in (19) also holds with equality. Therefore, by the

principle of induction, Lemma 3 is true.

References

[1] R. Sengupta, “Discrete event diagnosis of automated vehicles and high-
ways,” in Proc. of 2001 American Control Conf., June 2001.

[2] T.-S. Yoo and H. Garcia, “Event diagnosis of discrete event systems
with uniformly and non-uniformly bounded diagnosis delays,” in Proc

of 2004 American Control Conf , 2004, pp. 5102-5107.
[3] K. Sinnamohideen, “Discrete-event diagnosis of heating, ventilation,

and air-conditioning systems,” in Proc. of 2001 American Control

Conf., June 2001.
[4] M. Sampath (1995). Discrete event systems based diagnostics for a vari-

able air volume terminal box application. Techincal Report Advanced
Development Team, Johnsons Control Inc..

[5] M. Sampath, A. Godambe, E. Jackson, and E. Mallow, “Combining
qualitative and quantitative reasoning — a hybrid approach to failure
diagnosis of industrial systems,” in IFAC Saveprocesses, 2000, pp. 494–
501.

[6] M. Sampath (1999). Embedded print engine diagnostics: The DC265
project and beyond. Technical Report X9900094, Xerox Corporation.

[7] E. Garcia, F. Morant, R. Blasco-Giménez, and E. Quiles, “Centralized
modular diagnosis and the phenomenon of coupling,” in Proc of the

6th International Workshop on Discrete Event Systems (WODES’02),
2002, pp. 161–168.

[8] Y.-L. Chen and G. Provan, “Modelling and diagnosis of timed discrete
event systems — a factory automation example,” in Proc. of 1997

American Control Conf., 1997, pp. 31–36.
[9] Y. Pencolé, “Diagnostic décentralisé de systèmes à évènements dis-

crets: application aux résaux de télécommunications,” Ph.D. Thesis,
Université de Rennes, France, 2002.

[10] ——, “Decentralized diagnoser approach: Application to telecommu-
nication networks,” in Proc. DX’00: Eleventh International Workshop

on Principles of Diagnosis, 2000, pp. 185–192.

[11] Y. Pencolé, M.-P. Cordier, and L. Rozé, “A decentralized model-based
diagnostic tool for complex systems,” in Proc of 13th IEEE Int. Conf.

on Tools with Arif. Intel. (IC-TAI’01), 2001, pp. 95–102.
[12] L. Rozé, “Supervision de réseaux de télécommunications: Une ap-

proche à base de modèles,” Ph.D. Thesis, Université de Rennes I,
France, 1997.

[13] L. Rozé and M.-O. Cordier, “Diagnosing discrete-event systems: An
experiment in telecommunication netowrks,” in Proc of the 1998 Inter-

national Worksho[on Discrete Event Systems (WODES’98), 1998, pp.
130–137.

[14] ——, “Diagnosing discrete-event systems: Extending the diagnoser
approach to deal with telecommunication netowrks,” Discrete Event

Dynamic Systems: Thoery and Applications, vol. 12, pp. 43–81, 2002.
[15] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.

Teneketzis, “Diagnosability of discrete event systems,”, vol. 40, no. 9,
pp. 1555–1575, Sep. 1995.

[16] ——, “Failure diagnosis using discrete event models,”, vol. 4, no. 2,
pp. 105-124, Mar. 1996.

[17] M. Sampath, S. Lafortune, and D. Teneketzis, “Active diagnosis of
discrete event systems,”, vol. 43, no. 7, pp. 908–929, Jul. 1998.

[18] M. Larson, “Diagnosis and analysis of diagnosis properties using dis-
crete event systems,” in Proc of 37th IEEE Confrerence on Decision

and Control, 1998, pp. 3775–3780.
[19] T. Chun (1996). Diagnostic supervisory control: A discrete event sys-

tem approach. Master’s thesis, University of Toronto, Dept. of Elec.
Eng..

[20] S. Jiang, R. Kumar, and H. Garcia, “Diagnosis of repeated/intermittent
failures in discrete event systems,” Transportation Research, vol. 19,
no. 2, pp. 310–323, Apr. 2003.

[21] J. Ashley and L. E. Holloway, “Qualitative diagnosis of condition sys-
tems,” Discrete Event Dynamic Systems: Theory and Applications,
vol. 14, no. 4, pp. 395–412, Oct. 2004.

[22] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, “Diagnosis of a
class of distributed discrete-event systems,” Systems, Man and Cyber-

netics, Part A, IEEE Transactions on, vol. 30, no. 6, pp. 731–752, Nov.
2000.

[23] S. Bavishi and E. K. P. Chong, “Automated fault diagnosis using a dis-
crete event systems framework,” in Intelligent Control, 1994., Proceed-

ings of the 1994 IEEE International Symposium on, 1994, Columbus,
OH, pp. 213–218.

[24] O. Contant, S. Lafortune, and D. Teneketzis, “Failure diagnosis of
discrete event systems: The case of intermittent failures,” in Proc of

41st IEEE Conference on Decision and Control, 2002.
[25] S. Lafortune, D. Teneketzis, M. Sampath, R. Sengupta, and K. Sin-

namohideen, “Failure diagnosis of dynamic systems: an approach based
on discrete event systems,” in American Control Conference, 2001. Pro-

ceedings of the 2001, vol. 3, 2001, Arlington, VA, pp. 2058–2071.
[26] A. Mahajan and D. Teneketzis, On-time diagnosis of discrete event

systems—some examples, 2008. Available at http://www.eecs.umich
.edu/˜adityam/publications/conferences/wodes2008/appendix.pdf.

387

