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Introduction

Sequential hypothesis testing: sensor network, intrusion detection,
primary channel detection, quality control and clinical trials, etc.

Decentralized sequential hypothesis testing: decisions are made in
decentralized manner by multi decision makers.

Motivation:
There are various results that establish optimality of threshold-based
strategies in different setups, but few results on how to compute optimal
thresholds.
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Problem Formulation: Model

Consider a decentralized sequential hypothesis problem investigated in
Teneketzis and Ho. (1987).

Decision maker: Two decision makers DMi, i ∈ {1, 2};

Hypothesis: H ∈ {h0, h1} with a prior probability p and 1− p;

Observation: Y i
t ∈ Y i;

{Y i
t}∞t=1 are i.i.d. with PMF f i

k , k ∈ {1, 2};
{Y1

t }∞t=1 and {Y2
t }∞t=1 are conditionally independent given H.

Strategy: Ui
t ∈ {h0, h1,C} according to Ui

t = gi
t(Y i

1:t).
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Problem Formulation: Model

Stopping time: Ni = min{t ∈ Z > 0 : Ui
t ∈ {h0, h1}};

Observation cost: ci for each observation at DMi;

Stopping cost: `(U1,U2,H) which satisfies:
`(U1,U2,H) cannot be decomposed as `(U1,H) + `(U2,H);
For any m, n ∈ {h0, h1}, m 6= n,

`(m,m, n) > `(n,m, n) > ci > `(n, n, n);

`(m,m, n) > `(m, n, n) > ci > `(n, n, n).

Goal: Given p, choose (g1, g2) to minimize J(g1, g2; p), where

J(g1, g2; p) = E[c1N1 + c2N2 + `(U1,U2,H)].
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Problem Formulation: Problem

Problem 1: Given the prior probability p, the observation PMFs f i
0, f

i
1,

the observation cost ci, and the loss function `, find a strategy (g1, g2)
that minimizes the cost given byJ(g1, g2; p).

Problem 2: Given the prior probability p, the observation PMFs f i
0, f

i
1,

the observation cost ci, and the loss function `, find a strategy (g1, g2)
that is person-by-person optimal (PBPO).

A person-by-person optimal (PBPO) strategy (g1, g2) satisfies:

J(g1, g2) ≤ J(g1, g̃2), ∀g̃2 ∈ G2,

J(g1, g2) ≤ J(g̃1, g2), ∀g̃1 ∈ G1.
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Information State Process

For any i ∈ {1, 2}, let −i denote the other decision maker. For any realization
yi

1:t of Y i
1:t, define

πi
t := P(H = h0 | yi

1:t).

In addition, define

qi(yi
t+1 | πi

t) := πi
t · f i

0(yi
t+1) + (1− πi

t) · f i
1(yi

t+1), (1)

φi(πi
t, y

i
t+1) := πi

t · f i
0(yi

t+1)/qi(yi
t+1 | πi

t). (2)

The update of the information state is given by πi
t+1 = φi(πi

t, y
i
t+1).

{πi
t}∞t=1 is an information state process for DMi.

For ease of notation, for any i ∈ {1, 2}, k ∈ {0, 1}, ui ∈ {h0, h1}, and gi ∈ Gi,
define

ξi
k(ui, gi; p) = P(Ui = ui | H = hk; gi, p).
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Structure of Optimal Decision Rules

Threshold based strategy: A strategy of the above form is called threshold
based if there exists thresholds αi

t, β
i
t ∈ [0, 1], αi

t ≤ βi
t , such that for any

πi ∈ [0, 1],

gi
t(π

i) =


h1 if πi < αi

t,

C if αi
t ≤ πi ≤ βi

t ,

h0 if πi > βi
t .

Time invariant strategy: A strategy gi = (gi
1, g

i
2, . . . ) is called time invariant

if for any πi ∈ [0, 1], gi
t(π

i) does not depend on t.

Theorem
For any i ∈ {1, 2} and any time-invariant and threshold-based strategy
g−i ∈ G−i, there is no loss of optimality in restricting attention to
time-invariant and threshold based strategies at DMi. Moreover, the best
response strategy at DMi is given by the solution of a dynamic program:
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Dynamic Program

For any πi ∈ [0, 1]

V i(πi) = min{W i
0(πi, g−i),W i

1(πi, g−i),W i
C(πi, g−i)}, (3)

where for k ∈ {0, 1},

W1
k (π1, g2) =

∑
u2∈{h0,h1}

[
ξ2

0(u2, g2;π1) · π1 · `(hk, u2, h0)

+ ξ2
1(u2, g2;π1) · (1− π1) · `(hk, u2, h1)

]
, (4)

W2
k is defined similarly, and

W i
C(πi, g−i) = ci + BiV i(πi), (5)

where Bi is the Bellman operator given by

[BiV i](πi) =
∑

yi

q(yi | πi) · V i(φ(πi, yi)),

and q(yi | πi) is given by (??).
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Algorithms for computing optimal thresholds

We propose two methods to compute the optimal thresholds.

Orthogonal search
Iteratively solve

〈α1, β1〉 = D1(〈α2, β2〉) and 〈α2, β2〉 = D2(〈α1, β1〉). (6)

Direct search
Approximately compute J(〈α1, β1〉, 〈α2, β2〉; p) and search for optimal
〈α1, β1〉, 〈α2, β2〉 using derivative-free non-convex optimization method.
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Orthogonal search

The following procedures are used to solve the coupled dynamic programs:

1 Start with an arbitrary threshold-based strategy (〈α1
(1), β

1
(1)〉).

2 Construct a sequence of strategies as follows:
1 For even n:

〈α1
(n), β

1
(n)〉 = D1(〈α2

(n−1), β
2
(n−1)〉),

and
〈α2

(n), β
2
(n)〉 = 〈α2

(n−1), β
2
(n−1)〉.

2 For odd n:
〈α1

(n), β
1
(n)〉 = 〈α1

(n−1), β
1
(n−1)〉,

and
〈α2

(n), β
2
(n)〉 = D2(〈α1

(n−1), β
1
(n−1)〉).
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Orthogonal search

Theorem
The orthogonal search procedure described above converges to a
time-invariant threshold-based strategy (g1, g2) that is person-by-person
optimal.

Proof.
Let (g1

(n), g
2
(n)) denote the strategy at step n. By construction,

J(g1
(n), g

2
(n)) ≤ J(g1

(n−1), g
2
(n−1)).

Thus, the sequence {J(g1
(n), g

2
(n))} is a decreasing sequence lower bounded

by 0. Hence, a limit exists and the limiting strategy is PBPO.
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Preliminaries: Discretizing continuous state Markov chains

For any m ∈ N, for any i ∈ {0, 1}, we approximate the [0, 1]-valued Markov
process {πi

t}∞t=1, by a Sm-valued Markov chain Sm =
{

0, 1
m ,

2
m , . . . , 1

}
.

Algorithm 1: Compute transition matrices
input: Discretization size m, DM i; output: Pi

0, Pi
1, Pi
∗

forall sp ∈ Sm do
forall y ∈ Y i do

let s+ = φi(s, yi)
find sq, sq+1 ∈ Sm such that s+ ∈ [sq, sq+1)
find λy

q, λ
y
q+1 ∈ [0, 1] such that

• λy
q + λy

q+1 = 1 • s+ = λy
qsq + λy

q+1sq+1

forall q ∈ {0, 1, . . . ,m} do
[Pi

0]pq =
∑

y λ
y
q · f i

0(y) · sp

[Pi
1]pq =

∑
y λ

y
q · f i

1(y) · (1− sp)

[Pi
∗]pq =

∑
y λ

y
q · qi(yi | sp)
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Approximation with discrete-state Markov chain

For a given ξi
k (fix i and k), given any threshold based strategy gi = 〈αi, βi〉

such that αi, βi ∈ Sm, define sets Ai
0,Ai

1 ⊂ Sm as: Ai
0 =

{
βi, βi + 1

m , . . . , 1
}

and Ai
1 =

{
0, 1

m , . . . , α
i
}

as shown below.

Then ξi
k(h0, gi; p) is approximated by the event that the Markov chain with

transition probability Pi
k that starts in p gets absorbed in the set Ai

0 before it is
absorbed in the set Ai

1.

Define θi
k(gi; p) = E[Ni | H = hk; gi, p], then θi

k(gi; p) can be approximated
using the expected stopping time of Markov chain. This is approximated by
the event that the Markov chain starting in p is absorbed in (Ai

b ∪ Ai
1).

C. Cui and A. Mahajan (McGill University) Computing Optimal Thresholds CDC 2015 14 / 1



Approximation with discrete-state Markov chain

Let P̂i
k be the transition matrix of the corresponding absorbing Markov chain.

Re-order states so that P̂i
k may be written in the canonical form

P̂i
k =

(
Qi

k Ri
k

0 I

)
,

Define Bi
k = (1− Qi

k)
−1Ri

k, then,

ξi
k(hb, 〈αi, βi〉; p) ≈ [Bi

k]p∗b, b ∈ {0, 1}, (7)

Define T i
k = (I − Qi

k)
−11, where 1 is a column vector with all entries as 1,

then,
θi

k(〈αi, βi〉; p) ≈ [T i
k]p∗ , (8)

where p∗ denotes the index of p in Sm \ (Ai
0 ∪ Ai

1).
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Approximate solution of the dynamic program

We’ve approximated ξi
k(·, g−i; p), and therefore approximately compute

W i
k(π

i, g−i).

Define an approximate Bellman operator using the first-order hold transition
matrix Pi

∗ as follows:

[B̂iV i](s) = ci +
∑

s+∈Sm

[Pi
∗]ss+V(s+).

Then B̂i corresponds to the discretization of Bi on Sm and performing linear
interpolation on points outside Sm. Hence, it may be used to approximately
compute WC(πi, g−i).

Combing all these, we get an approximate procedure to solve the dynamic
program of Theorem 1. This, in turn, gives an approximate procedure for
finding a PBPO strategy using orthogonal search.
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Direct search: Performance of an arbitrary strategy

Recall the definition and approximation of ξi
k(ui, gi; p) and θi

k(gi; p). For a
particular a prior probability p, the expected cost J(g1, g2; p) can be
expanded as:

J( g1, g2; p) = p · [c1 · θ1
0(g1; p) + c2 · θ2

0(g2; p)]

+ (1− p) · [c1 · θ1
1(g1; p) + c2 · θ2

1(g2; p)]

+

2∑
u1,u2∈{h0,h1}

[
p · ξ1

0(u1, g1; p) · ξ2
0(u2, g2; p) · `(u1, u2, h0)

+ (1− p) · ξ1
1(u1, g1; p) · ξ2

1(u2, g2; p) · `(u1, u2, h1)
]
. (9)
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Direct search: Search over all threshold based strategy.

We expect J(p, 〈α1, β1〉, 〈α2, β2〉) to be non-convex in the parameters
(α1, β1, α2, β2). Since there is no analytic expression for J, in the numerical
results We use a derivative-free algorithms—Nelder-Mead simplex algorithm.

To reduce the dependence of the numerical results on the choice of the a priori
probability p, we pick multiple values of p in a finite set P ⊂ [0, 1] and use

Ĵ(α1, β1, α2, β2) =
1
|P|

∑
p∈P

J(p, 〈α1, β1〉, 〈α2, β2〉)

as the objective function for the non-convex optimization algorithm. If
J(p, 〈α1, β1〉, 〈α2, β2〉) was computed exactly, then such an averaging will not
affect the result of the optimization algorithm because the optimal strategy
(g1, g2) does not depend on the choice of p.
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Numerical Experiments

We compare the performance of orthogonal search and direct search on a
benchmark system, Y1 = Y2 = {0, 1} and the loss function is of the form:

`(u1, u2, h) =


0, if u1 = u2 = h,
1, if u1 6= u2,

L, if u1 = u2 6= h.

(10)

For both methods, we use m = 1000 and in direct search, we use P = Sm.

Note that by choosing parameters (c1, c2,L) and observation distributions
(f 1

0 , f
1
1 , f

2
0 , f

2
1 ), we completely specifies the model.
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We will work with two choices of parameters:

A particular instance.
A system with c1 = c2 = 0.05, and

f 1
0 =

[
0.25 0.75

]
, f 2

0 =
[
0.80 0.20

]
,

f 1
1 =

[
0.60 0.40

]
, f 2

0 =
[
0.30 0.70

]
.

In coupled loss cases L = 2.5, in decomposables cases L = 2.

Randomized parameters.
Randomly generate 500 instances of the parameters (c1, c2,L) and
(f 1

0 , f
1
1 , f

2
0 , f

2
1 ). Specifically, we use f i

k = [δi
k, 1− δi

k] with δi
k ∼ unif[0, 1].

In decomplsable cases, L = 2

In the following slides, we will show the numerical results for three scenarios
based on the parameters described above.
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Coupled Loss Case

Let OS and DS denote the solution obtained by orthogonal search and direct
search.

g1 = 〈α1, β1〉 g2 = 〈α2, β2〉 Ĵ(g1, g2) iters. runtime

OS 〈0.326, 0.73〉 〈0.07, 0.931〉 0.455 5 1.45s
DS 〈0.287, 0.726〉 〈0.14, 0.863〉 0.436 45 6.05s

Let JOS, JDS denote the performance of the solution obtained by orthogonal
search and direct search. Define ∆JOS = (JOS − JDS)/JOS and
∆JDS = (JDS − JOS)/JDS.
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Decomposable Case

The problem decomposes into two centralized problem when `(U1,U2,H)
equals to `(U1,H) + `(U2,H). We use value iteration to solve centralized
problem and refer to this solution as centralized solution, denoted as CS.

g1 = 〈α1, β1〉 g2 = 〈α2, β2〉 Ĵ(g1, g2)
OS 〈0.318, 0.686〉 〈0.089, 0.913〉 0.428
DS 〈0.3053, 0.7055〉 〈0.1845, 0.8218〉 0.406
CS 〈0.305, 0.705〉 〈0.184, 0.822〉 0.406

Let J∗ denote the centralized solution. Define the relative errors
EOS = (JOS − J∗)/J∗ and EDS = (JDS − J∗)/J∗.
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Asymptotic Case

When ci � L, the asymptotic expression of ξi
k and θi

k are given as:

ξi
0(h1, gi, p) =

αi(1− p)

(1− αi)p
= B, ξi

1(h0, gi, p) =
(1− βi)p
βi(1− p)

= A.

θi
0(p, gi) =

log(A)∑
Y i [log f i

1(Y
i)

f i
0(Y

i)
] · f i

0(Y i)
, θi

1(p, gi) =
log(1/B)∑

Y i [log f i
1(Y

i)

f i
0(Y

i)
] · f i

0(Y i)
.

Then use direct search to find the optimal threshold gi. The histograms of EOS

and EDS are shown below.
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Summary

Two methods to approximately compute the optimal threshold-based
strategies in decentralized sequential hypothesis testing.

Discretization of continuous-valued information state process by a
finite-valued Markov chain.

In our example, direct search performs better than orthogonal search;
sometimes, significantly better.

A future direction is to generalize the approximation methods developed in
this paper to more general decentralized sequential hypothesis models.
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