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The Setup

Encoder
Unknown
Channel

Decoder

𝑊∘

∘ Nature chooses a DMC 𝑊∘ from a family 𝒲.

∘ The family 𝒲 is known to the encoder and decoder; The choice of 𝑊∘ is not.

∘ The choice of 𝑊∘ does not change with time.

∘ What is the capacity and error exponent of this setup?



Capacity

Training based schemes can achieve any rate 𝑅 < 𝐶(𝑊∘).
A feasible scheme: For block length 𝑡, train for length log 𝑡. Use a standard code
for the estimated channel.

Proof based on uniform continuity of entropy (and hence of mutual
information) on the input distribution and the channel transition matrix

Not knowing the channel does not affect feedback capacity.



Error Exponents



Error Exponents: Known Channel

Fixed Length Communication
For output symmetric channels sphere packing bound is an upper bound

𝐸𝑠𝑝(𝑅,𝑊∘) = sup
𝜌≥0

� 𝐸0(𝜌,𝑊∘) − 𝜌𝑅 �

Various lower bounds for different rate regions

Variable Length Communication
Characterized completely. Burnashev's Exponent

𝐸𝐵(𝑅,𝑊∘) = � max
(𝑥,𝑥′)∈𝒳×𝒳

𝐷(𝑊∘(⋅|𝑥)∥𝑊∘(⋅|𝑥
′)) � �1 −

𝑅

𝐶(𝑊∘)
�



Error Exponent: Fixed Block length

Rate

Exponent

𝐶𝑝 = 0.53 bits𝐶𝑝 = 0.53 bits

0.7280.728

0.3220.322

𝑝 = 0.1

Sphere packing

Random coding



Error Exponent: Variable Block Length

Rate

Exponent

𝑝 = 0.1

𝐶𝑝 = 0.53 bits𝐶𝑝 = 0.53 bits

0.7280.728

0.3220.322

2.5362.536

Burnashev's exponent



Error Exponent: Unknown channel
Training based schemes for Fixed length communication

M. Feder and A. Lapidoth, Universal decoding for channels with memory, IT-98

Block length 𝑡

Training
length 𝑡1

Communication length 𝑡2

𝑃𝑒 ≈ 𝑒
−𝑡1� �

+ 𝑒
−𝑡2� �

∘ 𝑡1 ≈ 𝑡2 � �� � � ⟹ loss in rate

∘ 𝑡1 = 𝑜(𝑡) ⟹ loss in exponent



Error Exponent: Unknown channel
Bounds for Variable length communication

A. Tchamkerten and E. Telatar,
Variable length coding over an unknown channel, IT-06

For some families of channels adaptive schemes can achieve Burnashev's
exponent

𝒲𝐵𝑆𝐶 = {BSC(𝑝) : 0 ≤ 𝑝 ≤ 1/2} or 𝒲𝑍 = {Z(𝑝) : 0 ≤ 𝑝 ≤ 1}

For some families of channels no scheme can achieve Burnashev's exponent

𝒲𝑝 = {BSC(𝑝), BSC(1 − 𝑝)}, 0 ≤ 𝑝 ≤
1

2
, 𝑝 known



Error Exponent: Unknown channel
Training based schemes for variable length communication

A. Tchamkerten and E. Telatar,
On the use of training sequences for channel estimation, IT-06

The error exponent of training based schemes where the training length is fixed
does not have positive slope at capacity.

Seems to suggest that training based schemes loose the biggest advantage of
feedback — positive slope of the error exponent at capacity



Are training based schemes really bad?

Tchamkerten and Telatar assume training length is fixed

Feedback boosts error exponents because the transmitter can adapt to channel
variations. Fixed length training takes away that advantage.

To boost error exponents, training must adapt to channel variations while
communicating (not channel variations while training)

Must train multiple times



How do we achieve error exponents when the channel is
known?

Burnashev's adaptive coding scheme
Track the evolution of EMI (empirical mutual information) and stop when
EMI is large

Yamamoto-Itoh's iterative scheme
Transmit in multiple epochs consisting of communication phase and
confirmation phase.



Yamamoto-Itoh's iterative scheme

H. Yamamoto and K. Itoh, Asymptotic performance of a modified
Schalkwijk-Barron scheme with noiseless feedback, IT-79

Epoch length 𝑡

Communication
𝛾𝑡

Confirmation
(1 − 𝛾)𝑡

Epoch 2 Epoch 3

Communication phase: Fixed length code of rate 𝑅/𝛾 and length 𝛾𝑡.
Confirmation phase: Confirm whether the decoding was correct or not.

𝑃𝑒 ≤ 𝑒
−𝛾𝑡� �

⋅ 𝑒
−(1−𝛾)𝑡� �

⋅ 𝔼[number of epochs]



Yamamoto-Itoh's iterative scheme

𝑃𝑒 ≤ 𝑒
−𝛾𝑡� �

⋅ 𝑒
(1−𝛾)𝑡� �

⋅ 𝔼[number of epochs]

Take 𝛾 < 1 −
𝑅

𝐶

𝑅/𝛾 < 𝐶 ⟹ � � > 0 , � � ≈ 𝐷(𝑊∘(⋅|𝑥 = NACK)∥𝐷(𝑊∘(⋅|𝑥 = ACK))

𝔼[number of epochs] ≈ 1

𝐸𝐵(𝑅,𝑊∘) ≥ � � (1 − 𝛾) = 𝐷 �1 −
𝑅

𝐶
�



Main idea:
Use Yamamoto-Itoh's
scheme with training



Proposed scheme

⟹

Train independently in each epoch. Ensures that 𝔼[number of epochs] ≈ 1

Within an epoch, train independently in the communication and the confirmation
phase. Ensures that

𝑃𝑒 ≤ �𝑒
−𝛽1𝑡� �

+ 𝑒
−𝛽2𝑡� �

� ⋅ �𝑒
−𝛽3� �

+ 𝑒
−𝛽4𝑡� �

� ⋅ 𝔼[number of epochs]



An example

𝒲𝑝 = {BSC(𝑝), BSC(1 − 𝑝)}, 0 ≤ 𝑝 ≤
1

2
, 𝑝 known

Communicate at rate 𝑅 < 𝐶𝑝 = 1 − ℎ(𝑝).



An example

𝒲𝑝 = {BSC(𝑝), BSC(1 − 𝑝)}, 0 ≤ 𝑝 ≤
1

2
, 𝑝 known

Communicate at rate 𝑅 < 𝐶𝑝 = 1 − ℎ(𝑝).

Communicate across multiple epochs of length 𝑡 using an iterative coding
scheme. Each epoch consists of four phases

∘ Training phase of length 𝛽1𝑡: Send 𝛽1𝑡 zeros.
∘ Communication phase of length 𝛽2𝑡: Send ⌊2𝑡𝑅⌋ messages at rate 𝑅/𝛽2.
∘ Re-training phase of length 𝛽3𝑡: Send 𝛽3𝑡 zeros.
∘ Confirmation phase of length 𝛽4𝑡: Send 𝛽4𝑡 zeros (ACK) or 𝛽4𝑡 ones (NACK).



Rate and Probability of Error

Average Rate: lim
𝑡→∞

log(number of messages)

𝔼[number of epochs] ⋅ 𝑡
= 𝑅.

𝛽1𝑡 𝛽2𝑡 𝛽3𝑡 𝛽4𝑡

Probability of error:

𝑃𝑒 ≤ �𝑒
−𝛽1𝑡� �

+ 𝑒
−𝛽2𝑡� �

� ⋅ �𝑒
−𝛽3� �

+ 𝑒
−𝛽4𝑡� �

� ⋅ 𝔼[number of epochs]



Error Exponent

Error Exponent:

𝐸𝑠(𝑅,𝑊∘) = − lim
𝑡→∞

log 𝑃𝑒(𝑡)

𝔼[number of epochs] ⋅ 𝑡

≥ − lim
𝑡→∞

1

𝑡
log �𝑒

−𝛽1𝑡� �
+ 𝑒

−𝛽2𝑡� �
�

− lim
𝑡→∞

1

𝑡
log �𝑒

−𝛽3� �
+ 𝑒

−𝛽4𝑡� �
�

− lim
𝑡→∞

1

𝑡
log𝔼[number of epochs]



Error Exponent: 1st term

In the training + communication phase, train for 𝑜(𝑡) time. This gives a poor
decoding error exponents, but for Yamamoto Itoh's scheme all we just want the
exponent to be positive. So,

− lim
𝑡→∞

1

𝑡
log �𝑒

−𝛽1𝑡� �
+ 𝑒

−𝛽2𝑡� �
� ≈ lim

𝑡→∞
𝛽1 � � > 0



Error Exponent: 2nd term

In the re-training + confirmation phase, train such that 𝛽3 = 𝛽4 � � � � �.
This results in a loss in rate, but the rate of the confirmation phase is zero
anyways. So,

− lim
𝑡→∞

1

𝑡
log �𝑒

−𝛽3� �
+ 𝑒

−𝛽4𝑡� �
� ≥

� � ⋅ � �

� � + � �
⋅ (𝛽3 + 𝛽4)



Error Exponent: 3rd term

When 𝑃𝑒 ≈ 0, then the number of transmission epochs ≈ 1. So,

− lim
𝑡→∞

1

𝑡
log𝔼[number of epochs] ≈ 0



Error Exponent

Choose 𝛽1 + 𝛽2 =
𝑅

𝐶𝑝
and 𝛽3 + 𝛽4 = �1 −

𝑅

𝐶 𝑝
�. Then,

𝐸𝑠(𝑅,𝑊∘) ≥
� �

� � + � �
⋅ � � ⋅ �1 −

𝑅

𝐶
�

⏝⎵⎵⎵⎵⎵⎵⎵⎵⏝
Burnashev′s Exp



Error Exponent

Choose 𝛽1 + 𝛽2 =
𝑅

𝐶𝑝
and 𝛽3 + 𝛽4 = �1 −

𝑅

𝐶 𝑝
�. Then,

𝐸𝑠(𝑅,𝑊∘) ≥
� �

� � + � �
⋅ � � ⋅ �1 −

𝑅

𝐶
�

⏝⎵⎵⎵⎵⎵⎵⎵⎵⏝
Burnashev′s Exp

= 𝛼𝐷(𝑝∥1 − 𝑝) �1 −
𝑅

𝐶𝑝
�

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
Burnashev′s Exp

where 𝛼 =
𝐷(0.5∥𝑝)

𝐷(0.5∥𝑝) + 𝐷(𝑝∥1 − 𝑝)



Error Exponent: Performance

Rate

Exponent

𝒲𝑝, 𝑝 = 0.1

𝐶𝑝 = 0.53 bits𝐶𝑝 = 0.53 bits

0.7280.728

0.3220.322

2.5362.536

Burnashev's exponent

0.5710.571
Proposed scheme



Salient features

∘ The training based scheme is simple, yet it comes within a constant fraction
of the Burnashev's exponent.

∘ Allowing variable length training ensures that the error exponent has positive
slope at capacity.

Proposed scheme will not work when we have to communicate
at different rates for different channels in the family.



Conclusion

Training based schemes do not necessarily have poor error exponents. Schemes
with variable training length need further investigation.

Future Directions

∘ Error exponents of best training based schemes.

∘ Error exponents of best universal schemes.


