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Abstract—Capacity of a compound channel without feedback is
defined in a pessimistic manner as the maximum rate determined
before the start of communication such that communication is
reliable. In the presence of feedback, the transmission rate can
adapt to the channel chosen by nature. Thus, capacity can be
defined in an opportunistic manner as the maximum rate de-
termined at the end of communication such that communication
is reliable. Under this definition, transmission rate and error
exponents are regions rather than scalars. In this paper, variable
length communication over a compound channel with feedback
is formulated, its opportunistic capacity region is characterized,
and lower bounds for its error exponent region are provided.

I. INTRODUCTION

A compound channel Q is a family of DMCs (discrete

memoryless channels) defined over a common input and

output alphabets X and Y (see [1], [2]). Before the start of

communication, nature chooses a channel Qı from Q; her

choice is not revealed to the encoder or the decoder. The

capacity of a compound channel Q is given by (see [3])

C.Q/ D max
P 2�.X /

inf
Q2Q

I.P; Q/ (1)

where �.X / is the family of probability distributions on input

alphabet X and I.P; Q/ is the mutual information between

the input and output of a channel with input distribution P

and channel transition matrix Q. Thus, the encoder chooses a

channel input P and in response nature chooses the worst Qı
from Q.

When channel output feedback is available to the encoder,

the encoder can adapt to the choice of Qı by nature. Hence,

the capacity is given by (see [4])

CF .Q/ D inf
Q2Q

max
P 2�.X /

I.P; Q/ D C .Q/: (2)

The above notion of feedback capacity is pessimistic. It

quantifies the maximum rate determined before the start of
transmission such that communication is reliable over any
choice of channel Qı. In many applications, network traffic is

backlogged and we do not care about a rate guarantee before

the start of transmission. We would rather communicate at

the maximum rate such that communication is reliable for the
current choice of the channel Qı (even though this choice is

not revealed to the transmitter or the receiver before the start

of transmission). For example, let Q D fQ1; : : : ; QLg be a

compound channel. For any coding scheme, let P` and R` be

the probability of error and transmission rate when Qı D Q`,

` D 1; : : : ; L. If P` < " for ` D 1; : : : ; L and an arbitrarily

small ", then the rate .R1; : : : ; R`/ is achievable. The union of

all achievable rates is called the opportunistic capacity C .Q/

of the compound compound channel Q with feedback, i.e.,

CF .Q/ D ˚
.R1; : : : ; RL/ W .R1; : : : ; RL/ is achievable

�
:

Thus, in contrast to (2), the opportunistic capacity is a region

rather than a scalar value. We formally define achievable rates

and opportunistic capacity in Section II.

We show that the opportunistic capacity region is given by

a hyper-rectangle

CF .Q/ D ˚
.R1; : : : ; RL/ W 0 � R` < CQ`

; ` D 1; : : : ; L
�
;

which is determined by just its upper corner .CQ1
; : : : ; CQL

/.

Thus, in the presence of feedback, not knowing the channel

transition matrix does not result in a loss in maximum trans-

mission rate. The same is not true for error exponents.

For error exponents of DMC, variable length coding sig-

nificantly improves the reliability of communications. More

importantly, this improvement comes at a very little cost: the

best error exponents can be achieved by a simple coding

scheme [5] that asymptotically has a constant length along

almost all sample paths.

In a DMC Q with feedback, the error exponent of variable

length coding at a rate R < CQ is given by (see [6])

EB.R; Q/ D BQ

�
1 � R=CQ

�
; (3)

where

BQ D max
xA;xR2X

D
�
Q.�jxA/kQ.�jxB/

�
; (4)

Q.�jx/ is the probability distribution of the channel output

when the channel input is x, and D.pkq/ is the Kullback-

Leibler divergence between probability distributions p and q.

EB.R; Q/, also called the Burnashev exponent of channel Q

at rate R, has a non-zero slope at capacity. This slope captures

the main advantage of noiseless feedback—by reducing the

transmission rate by a small fraction of the capacity, we can

linearly increase the error exponent, and therefore, exponen-

tially decrease the probability of error.

In a compound channel, since the opportunistic capacity

CF .Q/ is a region rather than a scalar, the error exponents

at any rate also belong to a region called the error exponent
region (EER). We formally define this region in Section II.
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In Section III, we propose a variable length coding scheme

for communicating over a compound channel. The error

exponent .E1; : : : ; EL/ of this coding scheme at any rate

.R1; : : : ; RL/ 2 CF .Q/ is within a multiplicative factor of

the Burnashev exponent of DMC Qı, i.e.

E` � ˛BQ`
.1 � R`=CQ`

/

where ˛ depends on Q. Thus, this coding scheme retains

the main advantage of communicating over of noiseless

feedback—the error exponent has a non-zero slope at all rates

in the capacity region, including points near the boundary.

The main contributions of this paper are threefold.

1) We define opportunistic capacity and error exponent

regions of a compound channel with feedback. These

notions are more realistic than the traditional worse case

performance guarantees in compound channels.

2) We propose a simple and easy to implement coding

scheme whose error exponents are within a multiplica-

tive constant of the best possible error exponents.

3) We show that for variable length communication, ex-

plicitly using a training sequence can lead to reasonable

error exponents. For example, the error exponent of our

proposed scheme have a non-zero slope at all rates in

the capacity region.1

II. OPPORTUNISTIC CAPACITY AND ERROR EXPONENTS

Definition 1 (Variable length coding scheme) A variable
length coding scheme for communicating over a compound

channel Q D fQ1; : : : ; QLg with feedback is a tuple

.M; f; g; �/ where

� M D .M1; : : : ; ML/ is the compound message size where

M` 2 N, ` D 1; : : : ; L. Define M D QL
`D1f1; : : : ; M`g.

� f D .f1; f2; : : : / is the encoding strategy where ft W M �
Y t�1 7! X , t 2 N is the encoding function used at time

t .

� g D .g1; g2; : : : / is the decoding strategy where gt W
Y t 7! SL

`D1f.`; 1/; .`; 2/; : : : ; .`; M`/g, t 2 N is the

decoding function at time t .

� � is the stopping time with respect to the channel outputs

Y t . More precisely, � is a stopping time with respect to

the filtration f2Y t
; t 2 Ng. �

The coding scheme is known to both the transmitter and

the receiver. Variable length communication takes place as fol-

lows. A compound message W D .W1; : : : ; WL/ is generated

such that W` is uniformly distributed in f1; : : : ; M`g.2 The

transmitter uses the encoding strategy .f1; f2; : : : / to generate

channel inputs X1 D f1.W/, X2 D f2.W; Y1/, . . . until the

stopping time � with respect to the channel outputs. (� is

known to the transmitter because of feedback.) The decoder

then generates a decoding decision . OL; OW / D g� .Y1; : : : ; Y� /.

1This is not a contradiction of the results of [7]. Unlike [7], we allow the
coding scheme to vary the number of messages depending on Qı.

2All the probabilities of interest only depend on the marginal distributions
of W1, . . . , WL. So, the joint distribution of .W1; : : : ; WL/ need not be
specified.

The decoding decision consists of two components: an es-

timate OL of the channel, and an estimate OW for the OL-

component of W. A communication error occurs if OW ¤ W OL.

When communication is successful one of M OL messages is

conveyed without error. Note that successful communication

does not require OL to be the equal to the index of the true

channel.

The two main performance metrics of a coding scheme

are its rate and error probabilities. Both the rate and error

probabilities are vectors (rather than scalars) and denoted by

R D .R1; : : : ; RL/ and P D .P1; : : : ; PL/, respectively. These

are defined as follows.

Definition 2 (Rate) The rate R D .R1; : : : ; RL/ of a coding

scheme .M; f; g; �/ is given by R` D E`Œlog M OL�=E`Œ� � where

E`Œ�� is a short hand notation for EŒ�jQı D Q`�. Note that the

R` component of the rate vector R depends on the compound

message size M and not just its M` component. �

Definition 3 (Probability of error) The probability of error

P D .P1; : : : ; PL/ of a coding scheme .M; f; g; �/ is given by

P` D P`. OW ¤ W OL/ where P`.�/ is a short hand notation for

P.�jQı D Q`/. �

Rate and probability of error give rise to two asymptotic

performance metrics, viz., achievable rate and error exponents.

These are defined as follows.

Definition 4 (Achievable rate) A rate vector

R D .R1; : : : ; RL/ is said to be achievable if there

exists a sequence of variable length coding schemes

.M.n/; f.n/; g.n/; � .n//, n 2 N such that:

1) limn!1 E`Œ� .n/� D 1 for ` D 1; : : : ; L.

2) For any " > 0, there exists a nı."/ so that for all n �
nı."/, we have P

.n/

`
< " and R

.n/

`
� R` � ", for all

` D 1; : : : ; L. �

Note that our definition does not require limn!1 E`Œ OL.n/� D
`, although we expect that any reasonable coding scheme will

achieve that.

Definition 5 (Opportunistic Capacity) The union of all

achievable compound rates is called the opportunistic capacity
region of channel Q with feedback and denoted by CF .Q/.�

In Corollary 1, we show that CF .Q/ is given by a hyper-

rectangle with upper corner .CQ1
; : : : ; CQL

/.

Definition 6 (Error exponents) Given a sequence of coding

schemes .M.n/; f.n/; g.n/; � .n//, n 2 N, that achieve a rate

vector R, the asymptotic exponent E` of error probability

P` is given by E` D limn!1 � log P
.n/

`
=E`Œ� .n/�: Then

E D .E1; : : : ; EL/ is the error exponent of sequence of coding

schemes .M.n/; f.n/; g.n/; � .n//, n 2 N. �

Different sequence of coding schemes that achieve the same

rate can have different exponents. Thus, the error exponents

of a compound channel with feedback lie in a region, just like

the error exponents of multi-terminal communication [8].
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Definition 7 (Error exponent region) For a particular rate

R, the union of all possible error exponents is called the the
error exponent region (EER) of a compound channel with

feedback and denoted by E .R/. �

In this paper, we study the EER for all rate of the oppor-

tunistic capacity region and present lower bounds on the EER.

The above definitions of variable length communication is

different from the traditional definition where M` is a constant

and a single message is communicated (see, for example,

[7]). We allow the actual message W to depend on Qı (even

though Qı is not known at the transmitter or the receiver).

This allows for an additional degree of freedom in the choice

of the coding scheme. However, this additional degree of

freedom does not affect the opportunistic capacity region of

compound channel; all rates within CF .Q/ defined above

can be achieved using the traditional variable length coding

schemes. Neither do we know if this additional degree of

freedom improves the EER since the EER of a compound

channel has not been investigated using the traditional variable

length coding scheme. The main advantage of this additional

degree of freedom is that it significantly simplifies the coding

scheme.

Operational interpretation

A transmitter has to reliably communicate an infinite bit

stream, which is generated by a higher-layer application, to

a receiver over a compound channel with feedback. The

transmitter uses a variable length coding scheme .M; f; g; �/.

For ease of exposition, assume that all M`, ` D 1; : : : ; L,

are powers of 2 so that log2 M` is an integer. Let M � D
maxfM1; : : : ; MLg and M� D minfM1; : : : ; MLg. The trans-

mitter picks log2 M � bits from the bit stream. The decimal

expansion of the first log2 M` of these bits determine the

component W` of W. The message W is transmitted as

described above. At stopping time � the receiver passes . OW ; OL/

to a higher-layer application (which then converts OW to

bits) and the transmitter removes the first log2 M OL bits from

the log2 M � initially chosen bits and return the remaining

log2 M � � log2 M OL bits to the bit stream. Then, the above

process is repeated.

If the traditional pessimistic approach is followed, only

log2 M� bits are removed from the bit stream at each stage.

By following the opportunistic approach, with high probability

log2 M` bits are removed from the bit stream when the

channel Qı D Q`. By definition, M` � M�. Thus, by

defining capacity in an opportunistic manner, an additional

log2 M` � log2 M� bits are removed at each step.

A. A trivial outer bound on error exponents

Any coding scheme .M; f; g; �/ for communicating over a

compound channel Q can also be used to communicate over

DMC Q`. Hence, we have the following trivial upper bound

on the EER.

Proposition 1 For any variable length coding scheme for
communicating over Q at rate .R1; : : : ; RL/, each component

Message Mode Control Mode

Transmission Epoch

Training sequence is transmitted

One of ML̂m(k,n)(n) messages is transmitted

ACCPET or REJECT is transmitted

�β1(n)n��β2(L̂m(k, n), n)n� �β3(n)n� �β4(L̂c(k, n), n)n�

Fig. 1. The four phases of each transmission epoch.

of the error exponent region is bounded by the Burnashev
exponent of channel Q`, i.e.,

E` � BQ`
.1 � R`=CQ`

/ �

In the remainder of the paper, we try to derive a reasonable

lower bound on the EER.

III. THE CODING SCHEME

A. The coding scheme

We now describe a family of coding schemes to transmit

at a rate vector .R1; : : : ; RL/. Let C` denote the capacity

CQ`
of channel Q`, and let �` D R`=C`. The proposed

coding scheme transmits for multiple epochs, where each

epoch consists of four phases, two of which are variable

length. The number of epochs is a stopping time. The sequence

of coding schemes is parameterized by n; for a particular value

of n, the scheme is parameterized by constants ˇ1.n/, ˇ2.`; n/,

ˇ3.n/, ˇ4.`; n/, ` D 1; : : : ; L, and channel estimation rules
O�m.n/ and O�c.n/.

The length of the scheme depends on O�m.n/ and O�c.n/. Let

.T m
1 ; : : : ; T m

L / and .T c
1 ; : : : ; T c

L/ be the exponents of channel

estimation errors of rules O�m.n/ and O�c.n/, respectively. We

assume that O�m.n/ and O�c.n/ are chosen such that T m
`

> 0

and T c
`

> 0, ` D 1; : : : ; L.

Let �` D T c
`

=BQ`
. Before communication starts, the en-

coder and the receiver agree upon a reference channel Q�.

Let �� and �� denote the � and � corresponding to Q�. Now

define,

˛` D .1 C �`/

.1 � �`/
� .1 � ��/

.1 C ��/
:

The ˇ parameters are chosen such that the expected length of

the coding scheme when Qı D Q` is ˛`n. This means that

the expected length of the coding scheme under the reference

channel is n. We choose ˇ1.n/, ˇ2.`; n/, ˇ3.n/, and ˇ4.`; n/

such that

1) ˇ1.n/ > 0, lim
n!1 ˇ1.n/ D 0, and lim

n!1 ˇ1.n/n D 1;

2) ˇ2.`; n/ > ˛`�` and lim
n!1 ˇ2.`; n/ D ˛`�`, for all ` D

1; : : : ; L;

3) ˇ3.n/ > 0 and lim
n!1 ˇ3.n/ D .1 � ��/

.1 C ��/
; and

4) ˇ4.`; n/ > 0 and lim
n!1 ˇ4.`; n/ D �`

.1 � ��/

.1 C ��/
, for all

` D 1; : : : ; L.
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When there is no ambiguity, we will drop the dependence

on n and denote ˇ1.n/ by ˇ1, ˇ2.`; n/ by ˇ2.`/, ˇ3.n/ by ˇ3

and ˇ4.`; n/ by ˇ4.`/. We assume that the n is large enough

so that bˇi nc � ˇi n, i D 1; 2; 3; 4.

Epoch k, k 2 N, of the scheme consists of four phases (see

Figure 1):

1) Training phase: The transmitter sends a training se-

quence zˇ1n. The transmitter and the receiver use an

estimation rule O�m.n/ with the corresponding hypothesis

testing exponent .T m
1 ; : : : ; T m

L /. Let OLm.k; n/ denote the

channel estimate at the end of the training phase. We

have that

P`. OLm.k; n/ ¤ `/ � 2�ˇ1nT m
` ; ` D 1; : : : ; L: (5)

2) Message phase: The transmitter and the receiver agree

upon L codebooks. Codebook ` is of length ˇ2.`/n

and designed for optimally transmitting M`.n/ D
b2n˛`�`C`c messages over channel Q` without feedback,

` D 1; : : : ; L. At the beginning of the second phase, the

transmitter uses codebook OLm.k; n/ to transmit one of

M OLm.k;n/
.n/ messages; the receiver decodes according

to the same codebook. Let D.k; n/ be the indicator

function of the event that the decoded message is in

error. Then, if the estimation of the first phase is correct,

the probability of decoding error is given by

E`ŒD.k; n/ j OLm.k; n/ D `� � 2
�ˇ2.`/nEG

�
˛`�`C`=ˇ2.`/;Q`

�

(6)

where EG.R; Q/ is Gallager’s random coding expo-

nent [9, Theorem 5.6.2] for communicating at rate R

over DMC Q. Since ˇ2.`/ > ˛`�`, the transmission

rate ˛`�`C`=ˇ2.`/ is less than the capacity C` of the

channel Q`. So we have

EG.˛`�`C`=ˇ2.`/; Q`/ > 0: (7)

3) Retraining phase: The transmitter sends another training

sequence zˇ3n. The transmitter and the receiver use an

estimation rule O�c.n/ with the corresponding hypothesis

testing exponent .T c
1 ; : : : ; T c

L/. Let Lc.k; n/ denote the

channel estimate at the end of this training phase. We

have that

P`. OLc.k; n/ ¤ `/ � 2�ˇ3nT c
` ; ` D 1; : : : ; L: (8)

4) Control phase: Let xA.`/ and xR.`/ denote the max-

imally separated input symbols for channel Q`, i.e.,
the arg max in (4) for BQ`

. From channel feedback,

the transmitter knows whether the decoding in the

second phase was correct or not. If the decoding was

correct, the transmitter sends an ACCEPT consisting of

ˇ4. OLc.k; n//n repetitions of xA. OLc.k; n//; otherwise it

sends a REJECT consisting of ˇ4. OLc.k; n//n repetitions

of xR. OLc.k; n//. The decoder assumes that the channel

is OLc.k; n/ and treats detecting an ACCEPT or a REJECT

as a binary hypothesis testing problem (with REJECT

as the null hypothesis). Let NA.k; n/ and NR.k; n/

denote the indicators for whether ACCEPT or REJECT is

transmitted, and let H.k; n/ denote the indicator that the

hypothesis testing is in error. Then, according to [10],

there exist estimation regions at the receiver such that

E`ŒH.k; n/ j OLc.k; n/ D `; NA.k; n/ D 1� � 2�ˇ4nH A
`

.ˇ4n/

(9)

E`ŒH.k; n/ j OLc.k; n/ D `; NR.k; n/ D 1� � 2�ˇ4nH R
`

.ˇ4n/

(10)

where

lim
n!1 H R

` .n/ D BQ`
and lim

n!1 H A
` .n/ D 0 (11)

To describe the decoding operation, we need two definitions:

Definition 8 Let K.n/ be the epoch when communication

stops, i.e., the epoch when the receiver decodes an ACCEPT.

Thus,

K.n/ D finf k W NA.k; n/Œ1 � H.k; n/� C NR.k; n/H.k; n/ D 1g: �

Definition 9 Let ƒ.k; n/ denote the ratio of the length of

phase k and parameter n, i.e.,

ƒ.k; n/ D ˇ1.n/Cˇ2. OLm.k; n/; n/Cˇ3.n/Cˇ4. OLc.k; n/; n/:

�

The final decoding decision at the receiver is

. OLm.K.n/; n/; OW .K.n/; n//, where OW .k; n/ is the decoding

decision at the end of the second phase for epoch k.

As in Yamamoto-Itoh’s scheme, a decoding error occurs

if the decoding in the first phase is incorrect and the subse-

quent REJECT is decoded as an ACCEPT. All other erroneous

situations are corrected by retransmission and increase the

communication duration.

IV. PERFORMANCE ANALYSIS

Due to lack of space, we state the simple state the results

here without proofs. See [11] for proofs.

A. Some preliminary results

Asymptotically, the number of retransmissions go to zero.

Specifically, we have the following.

Lemma 1 When Qı D Q`, ` D 1; : : : ; L,

E`Œ1fK.n/ D kg� D p`.n/.1 � p`.n//k�1; k 2 N (12)

where limn!1 p`.n/ D 1; ` D 1; : : : ; L. Consequently, for
asymptotically large values of n, there is only one transmis-
sion, i.e.,

lim
n!1E`ŒK.n/� D 1: (13)

�

Along each sample path, the expected length of phase k is

proportional to n. Specifically, we have the following.

Lemma 2 For all n 2 N and any k 2 N, we have that
E`Œƒ.k; n/� D E`Œƒ.1; n/� and

lim
n!1E`Œƒ.1; n/� D ˛`:

�
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B. Achievability results

The proposed scheme achieves the rate vector

.�1C1; : : : ; �LCL/.

Proposition 2 The rate of transmission is

lim
n!1

E`Œlog M OLm.k;n/
.n/�

E`ŒK.n/ƒ.K.n/; n/n�
D �`C` (14)

�

The error exponent of this scheme is within a constant factor

of the Burnashev’s exponent when Qı is known.

Proposition 3 The error exponent region at rate
.�1C1; : : : ; �LCL/ is given by .E1; : : : ; EL/ such that

E` � T c
`

T c
`

C BQ`

BQ`
.1 � �`/ �

The above result implies that the rate point .C1; : : : ; CL/ is

achievable.

Corollary 1 The opportunistic capacity opportunistic capac-
ity region is given by a hyper-rectangle

CF .Q/ D ˚
.R1; : : : ; RL/ W 0 � R` < C`; ` D 1; : : : ; L

�
: �

V. AN EXAMPLE

Consider the compound channel Q :D fBSCp; BSC1�pg,

where BSCp denotes a binary symmetric channel with

crossover probability p. Assume that p is known to the en-

coder and the decoder. For convinience, we index all variables

by p and 1 � p rather than 1 and 2. The capacity and BQ

term of Burnashev exponent are given by Cp D C1�p D
1 � h.p/ and Bp D B1�p D D.pk1 � p/ where h.p/ D
�p log p � .1 � p/ log.1 � p/ is the binary entropy function

and D.pkq/ D �p log.p=q/ � .1 � p/ log..1 � p/=.1 � q//

is the binary Kullback-Leibler function.

We choose the all zero sequence as a training sequence and

estimate the channel based on the type of the output sequence.

If the empirical frequency of ones in the output is less than q,

p < q < 1 � p, the channel is estimated as BSCp; otherwise

the channel is estimated as BSC1�p . For this class of channel

estimation rules, the estimation error probability is bounded by

the tail of the probability of the sum of independent random

variables. From Hoeffding’s inequality [12, Theorem 1], the

exponents of the estimation errors are given by Tp D D.qkp/

and T1�p D D.qk1 � p/.

Suppose we want to communicate at rate .Rp; R1�p/, Rp <

Cp and R1�p < C1�p , using the coding scheme of Section III.

Let qm and qc be the estimation thresholds for the message

and control mode. The lower bound of Proposition 3 simplifies

to

Ep � D.qckp/D.pk1 � p/

D.qckp/ C D.pk1 � p/
.1 � �p/;

E1�p � D.qck1 � p/D.pk1 � p/

D.qck1 � p/ C D.pk1 � p/
.1 � �1�p/

where �p D Rp=Cp and �1�p D R1�p=C1�p .

The choice of qm does not affect the values of Ep and E1�p

as long as Tm > 0. For that, we require only that p < qm <

1 � p. Choosing qm D 0:5 ensures that.

We want to choose qc such that Ep D E1�p Thus, choosing

qc D 0:5, which maximally distinguishes between BSCp and

BSC1�p , is optimal only when �p D �1�p . For other values

of �p and �1�p , the optimal value of qc is determined by

inverting '.qc ; p/, where

'.q; p/ D 1 C D.pk1 � p/=D.qkp/

1 C D.pk1 � p/=D.qk1 � p/
(15)

VI. CONCLUSION

In the presence of feedback, not knowing the exact channel

transition matrix does not result in a loss in capacity. As

a result, we can provide an optimistic rate guarantee for

any rate less than the capacity of the actual channel, even

though we do not know the actual channel before the start

of communication. This is in contrast to the pessimistic rate

guarantees in compound channel without feedback. More

importantly, any rate vector in the optimistic capacity region

can be achieved using a simple, training- based coding scheme.

The error exponent of this scheme has a negative slope at all

rates in the capacity region, even at rates near the boundary

of the capacity region.
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