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Restless Bandits Example
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Channel Scheduling Problem

At which time, which channel and which resource should be used?

Features:

Time-varying channels

Partially-observable environment

Resource Allocation

Examples:

Cognitive radio networks

Resource constraint jamming
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Model (Channel)

n finite state Markov channels, N = {1, . . . , n}.
State space is finite ordered set S i , i ∈ N

Markov state process: {S i
t}t≥0

Transition Probability Matrix: P i

Resource: rate, power, bandwidth, etc., R = {∅, r1, . . . , rk}
Payoff: ρi (s, r), s ∈ S i , r ∈ R

ρi (s, r) = 0 if r = ∅

Example: S i = {sbad, sgood}, R = {rlow, rhigh}

ρi (s, r) =


rlow, if r = rlow

rhigh, if r = rhigh and s = sgood

0, if r = rhigh and s = sbad
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Model (Transmitter)

Two decisions to make at each time t:

Select L channels indexed by Lt
Ai
t = 1 if i ∈ Lt and 0 otherwise

Select resources denoted by R i
t

R i
t = ∅ if i /∈ Lt

Observation Process:

Y i
t =

{
S i
t , if Ai

t = 1

E, if Ai
t = 0.

Strategies:

At = ft(Y0:t−1,R0:t−1,A0:t−1),

Rt = gt(Y0:t−1,R0:t−1,A0:t−1,At).
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Model (Optimization Problem)

Problem

Given a discount factor β ∈ (0, 1), a set of resources R, and the
state space, transition probability, and reward function
(S i ,P i , ρi )i∈N for all channels, choose a communication strategy
(f, g) to maximize

J(f, g) = E
[ ∞∑

t=0

βt
∑
i∈N

ρi (S i
t ,R

i
t)Ai

t

]
.
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Literature Review and Approaches

Partially Observable Markov Decision Process (POMDP).

POMDP models suffer from curse of dimensionality:

The state space size is exponential in the number of channels

Simplified modelling assumptions:

Two state Gilbert-Elliot channels
Multi-state channels but identical
Fully-observable Markov Decision Process (MDP)
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Our contributions

Multi-state non-identical channels

Restless Bandit approach

Convert the POMDP into a countable MDP

Finite-state Approximation of the MDP
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POMDP (Belief State)

Belief state:

Πi
t(s) = P(S i

t = s |Y i
0:t−1,R

i
0:t−1,A

i
0:t−1).

Proposition

Let Πt denote (Π1
t , . . . ,Π

n
t ). Then, without loss of optimality,

At = ft(Πt)

Rt = gt(Πt ,At).

Recall: f is chennel selection policy and g is resource selection policy.
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Optimal Resource Allocation Strategy
No need for joint optimization of (f, g).
Let

ρ̄i (π) := max
r∈R

∑
s∈S i

π(s)ρi (s, r),

r i ,∗(π) := arg max
r∈R

∑
s∈S i

π(s)ρi (s, r).

Proposition

Define g i ,∗ : ∆(S i )× {0, 1} → R as follows

g i ,∗(π, 0) = ∅,
g i ,∗(π, 1) = r i ,∗(π).

For any channel selection policy, (g∗, g∗, . . . ) is an optimal
resource allocation strategy.
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Restless Bandit Model

(1) Each {Πi
t}t≥0, i ∈ N , is a bandit process.

(2) The transmitter can activate L of these processes.
(3) Belief state evolution:

Πi
t+1 =

{
δS i

t
, if process i is activated, Ai

t = 1,

Πi
t · P i , if process i is passive, Ai

t = 0.

(4) Expected reward:

ρit =

{
ρ̄i (Πi

t), if process i is activated, Ai
t = 1,

0, if process i is passive, Ai
t = 0.

Dynamics:

Process:

. . .→ Πi
t

f−→ Ai
t

g∗−−→ R i
t → Y i

t → ρ
i
t︸ ︷︷ ︸

time t

→ Πi
t+1 → . . .
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Restless Bandit Solution

The main idea is to decompose the coupled n-channel
optimization problem to n independent one-channel problems.

When the Whittle indexability is satisfied, then one may
propose a Whittle index policy.

The channels with minimum indices are selected.

The index strategy performs close-to-optimal for many
applications in the state-of-arts works.

Goal:
We provide an efficient algorithm to check the indexability and
compute the Whittle index.
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Problem Decomposition

Modified per-step reward: (ρ̄i (π)− λ)ai where λ can be viewed as
the cost for transmitting over channel i .

Problem

Given channel i ∈ N , the discount factor β ∈ (0, 1), the
cost λ ∈ R, and the belief state space, transition probability,
reward function tuple (∆(S i ),P i , ρi ), choose a policy
f i : ∆(S i )→ {0, 1} to maximize

J i
λ(f i ) := E

[ ∞∑
t=0

βt
(
ρ̄i (Πi

t)− λ
)
Ai
t

]
.
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Dynamic Programming (Belief State)

Theorem

Let V i
λ : ∆(S i )→ R be the unique fixed point of equation

V i
λ(π) = max

a∈{0,1}
Q i
λ(π, a)

where

Q i
λ(π, 0) = βV i

λ(π · P i )

Q i
λ(π, 1) = ρ̄iλ(π)− λ+ β

∑
s∈S i

π(s)V i
λ(δs).

Let f i
λ(π) = 1 if Q i

λ(π, 1) ≥ Q i
λ(π, 0), and f i

λ(π) = 0 otherwise.
Then, f i

λ is optimal for Problem 2.

Challenge: Continuous state space!
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Information State

Let O i
t ∈ S i denote the last observed state of channel i and

K i
t ∈ Z≥0 denote the time since the last observation. Then, we

have

(O i
t+1,K

i
t+1) =

{
(S i

t , 0) if Ai
t = 1

(O i
t ,K

i
t + 1) if Ai

t = 0.

Lemma

At any time t, Πi
t = δO i

t
· (P i )K

i
t almost surely.

Example:

 0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5


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Dynamic Programming (Information State)

Difficult to solve dynamic programming based on belief
state πi as the state space is ∆(S i ).

A new dynamic programming can be written considering the
information state (o i , k i ) where the state space is S i × Z≥0.

Pros and cons:
The state space is countable but still dynamic programming is
computationally infeasible.
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Finite-State Approximation

Dynamic Programming (Finite state space & Computable!)

Given m ∈ N, let Nm := {0, . . . ,m} and V i
λ,m : S i × Nm → R

denote the unique fixed point of

V i
λ,m(o, k) = max

a∈{0,1}
{Q i

λ,m(o, k , a)}

Q i
λ,m(o, k , 0) = βV i

λ,m(o, k + 1 ∧m)

Q i
λ,m(o, k , 1) = ρ̄i (o, k)− λ+ β

∑
s∈S i

(P i )kosV i
λ,m(s, 0).

Let f i
λ,m(o, k) = 1 if Q i

λ,m(o, k , 1) ≥ Q i
λ,m(o, k , 0), and

f i
λ,m(o, k) = 0 o.w.
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Finite-State Approximation

Approximation Limits

(i) limm→∞V i
λ,m(o, k) = V i

λ(o, k), ∀(o, k) ∈ S i × Z≥0.

(ii) Let f i ,∗
λ (o, k) be any fixed point of {f i

λ,m(o, k)}m≥1. Then, the

policy f i ,∗
λ (o, k) is optimal for sub-problem i .
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Indexability

Let passive set for process i be

P i
λ =

{
(o, k) ∈ S i × Nm : f i

λ,m(o, k) = 0
}
.

Recall: f iλ,m is the policy obtained by dynamic programming.

Definition (Indexability)

For any λ1, λ2 ∈ R process i is indexable if

λ1 ≤ λ2 =⇒ P i
λ1
⊆ P i

λ2
.

Definition (Whittle index)

The Whittle index of information state (o, k) of process i is
defined as

w i (o, k) = inf
{
λ ∈ R : (o, k) /∈ P i

λ

}
.
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Algorithms

λLB UB
w(1, 1) w(1, 2) w(2, 1) w(2, 2)

[
1 1
1 1

] [
0 1
1 1

] [
0 0
1 1

] [
0 0
0 1

] [
0 0
0 0

]

Procedure:
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Algorithms

Whittle Index Policy:
At each time,

Obtain the Whittle index corresponding to current information
state of all channels.

Transmit over the L channels with the smallest Whittle
indices.
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Conclusion

Dynamic spectrum access problem for transmitting over
multiple channels with partially observed channel state.

Resource allocation strategy can be computed offline and is
not affecting the channel selection strategy.

To circumvent the curse of dimensionality, we considered the
problem as a restless bandit and use the Whittle index
heuristic.

By reachable set of beliefs, the problem is converted from the
belief-valued processes into a countable-state process.

We developed low-complexity algorithms to check whether
each channel is indexable and if so, compute the Whittle
index for each information state.
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Q&A

Thank you!


