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Whack a Mole
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Applications

Applications: queueing, channel scheduling, machine maintenance
and clinical care.

1 A repairman is responsible for maintaining several machines.
Each machine stochastically deteriorates. There is a
state-dependent cost associated with running and repairing
the machine. He can repair one machine at a time.

2 Scheduling multiple data queues over a shared
communication channels, there is a cost associated with
holding packets or transmitting it. A fixed number of data
queues can be selected at a time.

The machine/queue restarts upon being repaired/selected.
Goal: Find a optimal/near-optimal policy to optimize scheduling!
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Model

n available arms (controlled Markov processes),
N = {1, . . . , n}.
m arms have to be selected. (m < n)

State space of each arm X i , i ∈ N
Action space for each arm {0, 1}
Passive action: ait = 0→ Markov chain matrix P i

xy

Active action: ait = 1→ Reset PMF Q i
y

Cost: c i (x it , a
i
t)
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Objective

Problem

Given the discount factor β, the total number n of arms, the
number m of active arms, the state space {X i}i∈N , the transition
matrices {P i}i∈N , the reset pmfs {Q i}i∈N , and the cost functions
{c i (·, ·)}i∈N ,
choose a time-homogeneous Markov policy g ,

At = g(Xt) such that
∑
i∈N

Ai
t = m

that minimizes

J(g) := (1− β)E
[ ∞∑
t=0

βt
∑
i∈N

c i (X i
t ,A

i
t)

]
.
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Challenge & Solution

Challenge: The dynamic program suffers from curse of
dimensionality! The size of the state space is |X |n.
Example: 100 machines with 3 states each results in a system
with 3100 ≈ 5.15× 1047 states!

Solution: Index-based heuristic policy (Whittle index [1988])
Drawback: Suboptimal!
Advantage: Problem decomposition ⇒ 100 problems with 3
states.
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Whittle Index policy

Whittle index heuristic provides a dynamic index for each arm
and select the arm with the smallest index at each time.

Whittle index exists if indexability condition is satisfied for all
arms.

Whittle index policy performs close-to-optimal for many
applications in the state-of-arts works.

There is no general framework to check indexability and
correspondingly, obtain the Whittle indices.

Objectives:

Prove our problem is indexable.

Provide a closed-form solution for the Whittle index.
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Problem Decomposition

Define
cλ(x it , a

i
t) := c i (x i , ait) + λait , a

i
t ∈ {0, 1}

for arm i .

Problem

Given an arm i ∈ N , discount factor β, the state space X i , the
transition probability matrix P i , the reset probability mass function
Q i , the cost function c i (·, ·) and the penalty λ ∈ R,
choose a policy g i : X i → {0, 1} to minimize

J i (g i ) := (1− β)E
[ ∞∑
t=0

βtc iλ(X i
t ,A

i
t)

]
.
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Dynamic Programming

Theorem

Let V i
λ : X i → R be the unique fixed point of the following:

V i
λ(x) = min

{
H i
λ(x , 0),H i

λ(x , 1)
}
, ∀x ∈ X i .

where

H i
λ(x , 0) = (1− β)c i (x , 0) + β

∑
y∈X i

P i
xyV

i
λ(y),

H i
λ(x , 1) = (1− β)

(
c i (x , 1) + λ

)
+ β

∑
y∈X i

Q i
yV

i
λ(y).

Let g i
λ(x) denote the minimizer of the right hand side. Then, g i

λ is
optimal for arm i.
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Indexability

Let passive set for arm i be

Πi
λ :=

{
x i ∈ X i : g i

λ(x) = 0
}
.

Definition (Indexability)

For any λ1, λ2 ∈ R arm i is indexable if

λ1 < λ2 =⇒ Πi
λ1
⊆ Πi

λ2
.

Definition (Whittle index)

The Whittle index of state x of arm i is defined as

w i (x) = inf
{
λ ∈ R : x ∈ Πi

λ

}
.
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Indexability Proof Sketch

Theorem

Each arm is indexable.

Lemma

Πλ =

{
x ∈ X : (1− β) inf

τ

L(x , τ)− c(x , 1)

1− βτ
<Wλ

}
.

Lemma

Wλ = λ+ β
∑

y∈X QyVλ(y) is increasing in λ.
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Whittle index

By definition,

w i (x) = inf

{
λ ∈ R : (1− β) inf

τ

L(x , τ)− c(x , 1)

1− βτ
<

λ+ β
∑
y∈X i

Q i
yV

i
λ(y)

}
.

Challenge: Obtaining a closed form solution for Whittle index is
inefficient.
Solution: To provide a closed-form solution we consider
threshold-based policies.
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Threshold Policies

The optimal policy for each subproblem is a threshold-based policy,
i.e.,

g (k)(x) :=

{
0, if x < k

1, otherwise.

C
(k)
λ := (1− β)E

[ ∞∑
t=0

βtcλ(Xt , g
(k)(Xt))

∣∣∣ X0 ∼ Q

]
= D(k) + λN(k).

where

D(k) := (1− β)E
[ ∞∑
t=0

βtc(Xt , g
(k)(Xt))

∣∣∣ X0 ∼ Q

]
,

N(k) := (1− β)E
[ ∞∑
t=0

βtg (k)(Xt)
∣∣∣ X0 ∼ Q

]
.
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Computation of D(k) and N (k)

Let

L(k) := E
[ τk−1∑

t=0

βtc(Xt , 0) + βτk c(Xτk , 1)
∣∣∣ X0 ∼ Q

]

M(k) := E
[ τk∑

t=0

βt
∣∣∣ X0 ∼ Q

]
.

Theorem

For all threshold k,

D(k) =
L(k)

M(k)
and N(k) =

1

βM(k)
− 1− β

β
.
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Property

Lemma

kλ := arg mink∈X C
(k)
λ is increasing in λ.

λ

kλ

Λ(k)

w(k − 1) w(k)

k

k + 1

Figure: kλ as a function of λ.
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Whittle Index

Theorem

The Whittle index for threshold-policies at state k ∈ X is

w(k) =
D(k+1) − D(k)

N(k) − N(k+1)
.

Proof.

Key Ideas:

C
(k)
λ is continuous in λ.

C
(k)
w(k) = C

(k+1)
w(k) , i.e.,

D(k)+w(k)N(k) = D(k+1)+w(k)N(k+1). λw(k)
D(k)

D(k+1)

C
(k)
λ

C
(k+1)
λ
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Whittle Index policy

Compute Whittle indices offline.

At each time instance, observe the state of each arm and
select the arm with the lowest Whittle index.
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Experiment Setup

Deterministic restart: Q = [1, 0, . . . , 0]

c(x , 0) = (x − 1)2 and c(x , 1) = 0.5(|X | − 1)2, β = 0.9

We consider structured and randomly generated stochastic
monotone matrices for P.

Monte-Carlo simulations: 5000 iterations with 250 time
steps in each one.
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Experiments (1) & (2)

Comparison with Optimal Policy for small-scale models:

αopt =
J(opt)

J(wip)
× 100

For |X | = 5, n = 5, m ∈ {1, 2} → αopt ∈ [95.5%− 100%].

95 96 97 98 99 100
0

20

40

60

80

100

αOPT

Figure: 100 randomly generated stochastic monotone matrices with
m = 1.
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Experiments (3) & (4)

Comparison with Myopic Policy for large-scale models:

εmyp =

(
J(myp)− J(wip)

J(myp)

)
× 100.

For |X | = 25, n ∈ {25, 50, 75}, m ∈ {1, 2, 5}
→ εmyp ∈ [0%− 12%].

0 2 4 6 8 10 12
0

20

40

60

εMYP

Figure: 100 randomly generated stochastic monotone matrices with
n = 75, m = 2.



21/23

Conclusion

A model for restless bandit with controlled restarts.

An indexable model.

A closed form expression to compute the Whittle indices when
the optimal policy is threshold-based.

Numerical experiments shows the Whittle index policy
performs very close to the optimal policy and better than a
myopic policy.
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Q&A

Thank you!
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Q&A
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