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Design Differentiation in DSE

 Design space exploration (DSE) is often used for MPSoCs

* Design spaces are large (on the orders of billions of alternatives)
* Design evaluation can be complex (requiring multiple metrics)

* Exhaustive search is usually intractable

* Goals of DSE:

1. Differentiate poor solutions from good ones
2. ldentify the Pareto-optimal set
3. Do so quickly and efficiently
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System Lifetime Optimization for MPSoC

* Semiconductor scaling has reduced integrated circuit lifetime
EIectromlgratlon Thermal Cyclmg Stress migration

sl

* Many strategles have been developed to address failure:
* Redundancy (at different granularities) or slack allocation
 Thermal management and task migration

[Source: JEDEC]

 System-level optimization seeks to maximize mean time to
failure under other constraints (e.g., performance, power, cost)
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Evaluating System Lifetime

* Failure mechanisms are modeled mathematically
* Historically, with the exponential distribution: easy to work with
* Recently, with log-normal and Weibull distributions: more accurate

* There is no straightforward closed-form solution for systems of
log-normal and Weibull distributions

* Therefore, Monte Carlo Simulation (MCS)!

 Use failure distributions to generate a random system instance (sample)
* Determine when that instance fails through simulation
» Capture statistics, and repeat!
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Multi-armed Bandits for Smarter Estimation

* Monte Carlo Simulation is needlessly computationally expensive
* Samples are distributed evenly to estimate lifetime
* Poor designs are sampled as much as good designs

* Multi-armed Bandits (MAB) are smarter
* Samples are incrementally distributed in order to differentiate systems
* E.g., to find the best, the best k, etc.

* Hypothesis: MAB can achieve DSE goals with fewer evaluations
than MCS by differentiating systems, not estimating lifetime
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* Multi-armed Bandits
* Successive Accept Reject
* Gap-based Exploration with Variance

e Lifetime Differentiation Experiments and Results
* Conclusions and Future Work
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Multi-armed Bandits Algorithms

 Which slot machine is the best?

* Monte Carlo Simulation is systematic
* Try every slot machine equally
* In the end, compare average payout

* Multi-armed Bandits algorithms gamble
intelligently
* Try every slot machine, but stay away from bad ones
* Do so by managing expected payout from next trial
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Simple MAB Example

 Assume Bernoulli-distributed
systems with different p

* UCB1 plays (samples) the arm
(system) that maximizes

2Ilnn

X; +

n;
* Explore, but favor better arms
* Eventually, the best system is
always played
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MAB for Lifetime Differentiation

e Conventional MAB formulations assume that
* The player never stops playing
* The reward is incrementally obtained after each arm pull
* Assingle best arm is identified

* For DSE, we relax these assumptions
* Assume a fixed sample budget used to explore designs
* The reward is associated with the final choice
* Find the best m arms

* Two MAB algorithms can be applied in this context
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Successive Accept Reject (SAR)

* SAR divides the sample budget into n phases to compare n arms
* Each phase, the allocated budget is divided across active arms

* After sampling, calculate the distance from boundary between
the m good designs and n — m bad ones
* Top m designs: A; = [1; — [i;,
* Bottom n—m designs: A; = ji;« — [1;

* Remove from consideration the design with the biggest gap
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Successive Accept Reject Example

Samples per phase for 10 designs, 1000 samples
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Successive Accept Reject Example

Successive Accept Rejects (Top 5 out of 10)
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Gap-based Exploration with Variance (GapE-V)

* GapE-V never removes a design from consideration

* Instead, pick the design that minimizes the empirical gap with
the boundary, plus an exploration factor

2a0; Tab
I = —A; + | =
! VT T3m o

* Effort is focused near the boundary

* High variance, or a limited number of samples, increase
likelihood a design is sampled
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GapE-V Example

GapkE (Top 5 out of 10)
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Experimental Setup

* NoC-based MPSoC lifetime optimization with slack allocation
* Slack is spare compute and storage capacity
* Add slack to components s.t. remapping mitigates one or more failures
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Evaluating the Chosen m

 We compare SAR, GapE-V, and MCS
* Optimal set determined with MCS using 1M samples per design

* How likely is it that an approach picks the wrong set?
* Compare the aggregate MTTF using policy J and the optimal set

PT[ZM? — Epgi) > 6] <4

1=1

* 0 is the probability of identification error, the chance a subset of
m differs significantly from the optimal set
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Picking the Top 50, MWD
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Picking the Top 50, MPEG-4

MPEGA4S, m=50
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Comparison with MCS after 500 samples

m=20 m=30
Benchmark ) SAR  GapE-V ) SAR  GapE-V

MWD3S 0.002 1.92x 1.72x 0.003 1.72x 1.71x
MWD4S 0.071 3.33x 2.13x 0.112 2.96x 2.07x
MPEGA4S 0.120 3.57x 2.70x 0.101 3.52x  2.48x
MPEG5S 0.052 5.26x 3.57x 0.083 4.07x 3.05x

m=40 m=50
Benchmark ) SAR  GapE-V ) SAR  GapE-V

MWD3S 0.009 1.79x 1.67x 0.021 1.49x 1.45x
MWDA4S 0.180 2.54x 2.01x 0.148 2.44x  1.92x
MPEG4S 0.202 3.60x 2.43x 0.115 3.33x  2.27x
MPEGbHS 0.292 3.70x 3.07x 0.162 3.57x  2.86x
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Does Error Tolerance Matter?
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What About Complexity?

* Complexity is a function of sampling and selection

* Sampling time ND x T, .. is fixed across approaches

* MCS performs no selection: all designs are sampled equally
* SAR (GapE-V) additional sorts the design list D (ND) times

Algorithm Run Time (Upper Bound)
MCS ND X Tgample
SAR ND X Teampie + D X Tsort(D)

GapE-V ND x Teample + ND X Tsort(D)
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MAB When Sampling is Expensive

Algorithm Number of Designs

50 100 200 400
MCS 441s 8.52s 16.86s 34.54s
SAR 4.48s 10.41s 27.22s  95.26s
GapE 5.33s 11.46s 34.31s 108.64s

* 500 samples per design, Intel E5-2670, 96GB RAM averaged
over 10 trials, or <1 ms per trial

* When sampling complexity is low, MAB loses as the population
grows (sorting dominates)
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Conclusions and Future Work

* The objective of DSE is to differentiate designs

* MCS is poorly suited for this: why evaluate bad designs?

* MAB spends samples to efficiently separate metric estimates
 Estimating system lifetime, MAB uses 33-81% fewer samples

* Next step: apply in population-based design space exploration
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Thank you!

Questions?
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Lifetime Distributions, MWD

MWDS3S lifetime (u=11.38 6=0.4705) MWDA4S lifetime (u=11.88 6=0.5982)
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Lifetime Distributions, MPEG-4

MPEG4S lifetime (u-12 76 5=0.9293) MPEGS5S lifetime (u-13 34 5=1.308)
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