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The Multi-Armed Bandit (MAB) Problem

@ At each step a Decision Maker (DM) faces the following sequential
allocation problem:

e must allocate a unit resource between several competing
actions/projects.
e obtains a random reward with unkown probability distribution.

@ The DM must design a policy to maximize the cumulative expected
reward asymptotically in time.
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Stylized model to understand exploration-exploitation

trade-off

@ Imagined slot machine with multiple arms.
@ The gambler must choose one arm to pull at each time instant.

@ He/she wins a random reward following some unknown probability
distribution.

@ His/her objective is to choose a policy to maximize the cumulative
expected reward over the long term.
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Real examples

@ In Internet routing:
e Sequential transmission of packets between a source and a destination.
e The DM must choose one route among several alternatives.
o Reward = transmission time or transmission cost of the packet.
@ In cognitive radio communications:
e The DM must choose which channel to use in different time slots
among several alternatives.
o Reward = Number of bits sent at each slot
@ In advertisement placement:
o The DM must choose which advertisement to show to the next visitor
of a web-page among a finite set of alternatives.
e Reward = Number of click-outs.
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Literature Overview

i.i.d. rewards

@ Lai and Robbins (1985) constructed a policy that achieves the
asymptotically optimal regret of O(logT).

e Agrawal (1995) constructed index type policies that depend on the
sample mean of the reward process, and they achieve asymptotically
optimal regret of O(logT).

@ Auer et. al. (2002), constructed an index type policy, called UCB1,
which whose regret is O(logT) uniformly in time.

v

Markov rewards
@ Tekin et. al. (2010) proposed an index-based policy that achieves an
asymptotically optimal regret of O(logT).
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The Reward Process and the Regret

Reward processes {YX}>,; k=1,...,K, defined on a common mea-
for each machine surable space (Q,A).

Set of probability {Pk;O € O}, where © is a known finite set, for
measures which:

° fk denotes probability density,

° Ho denotes mean.

Best machine k* £ argmax {Ma*}
ke{l,...,K}

e true parameter for machine k is denoted ;.
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Allocation policy and Expected Regret

Allocation policy

A mapping ¢; : Rt — {1,..., K} that indicates the arm to be selected
at the instant t

ur = ¢t(Zly ) Zt—l)v

where 73, ..., Z;_1 denote the rewards gained up until t — 1.

Expected Regret
K
Rr(d) =) </~Lg;* - N&;) E(nf),
k=1

where

ok nf_1+1 if uy =k,
& nf_l if up # k.
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The Multi-Armed Bandit Problem

The MAB problem is to define a policy

¢ ={¢e; t € Zso}

in order to minimize the rate of growth of

Rr(¢) as T — oo.
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Index policies and Upper Confidence Bounds

Index policy ¢

A policy that depends on a set g of indices for each arm and chooses the
arm with the highest index at each time.

Upper Confidence Bounds (UCB) [Agrawal (1985)]

A set g of indices is a UCB, if it satisfies the following conditions:

@ g is non-decreasing in t > n, for each fixed n € Z~¢ .

Q Let y{‘,y2k, ..., yK be a sequence of observations from machine k.
Then, for any z < pk,

Poy {gt,,, (ylk, . ,y,lf) < z, for some n < t} =o(t})
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The Proposed Allocation (UCB) policy

Consider a set of index functions g with
gé(,n (Y{(a te 7%5) £ ﬁﬁ + -,

where t € Zwo, n2nk e {1,...,t}, Cc€Rand k € {1,...,K}, and ik
is the maximum likelihood estimate of the mean of Y.

Then,
o if t < K: ¢& samples from each process Y* once

o if t > K: ¢& samples from Y, where

ur = argmax{gtk’nf; ke{l,...,K}}
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The main results

Under suitable technical assumptions, the regret of the proposed policy
satisfies

Rr(¢%) = o(T**?)

for some § > 0.

@ The proposed index policy works when the rewards processes are
ARMA processes with unknown means and variance.
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Preliminaries on MLE

Definition

A sequence of estimates {f,}°°; is called a maximum likelihood estimate if

fbn(ylw . a.yn) > réneaex{f@(yla cee ayn)}v ]P)Q* a.s.

{9“,,}3021 is called a (strongly) consistent estimator if , # 6* finitely often,
Py« a.s.

Assumption 1

Let Py , denote the restriction of Py to the o-field A,, n> 0. Then, for all
6 € © and n >0, Py, is absolutely continuous with respect to Py« ,.
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Preliminaries on MLE

For every 0 € ©, let fy , be the density function associated with Py ,.
Define

n—1 9n(_Vn|y )
h9 n()/nly )_ ( |y )

where y" = (y1,...,¥n).
Then, for every € > 0, there exists a(e) > 1, such that

Po- {0 < hénil(y,,\y"*l) < a, forall n> ]@]} <e

where 6, € ©.

Theorem 1 (PEC, 1975)

Under Assumptions 1 and 2, the sequence of the maximum likelihood
estimates is (strongly) consistent.

v
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Assumptions on the model

For every arm k, there is a consistent estimator 9% = {@’1‘,5", .

Assumption 4 (The summable Wrong and Corrected Condition
(SWAQ))

For all machines k € {1,..., K}, the sequence of estimates QA{‘, el 9,’5, .
satisfies the following condition:

P (O5_1 # 04, O = 0%, Ym > 1) < g

for some C € R.g, B € Ryg, and for all n € Z~,.
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The Lock-on time

Definition

For a consistent sequence of estimates é{‘, . ,GA,’; ..., the lock-on time
refers to the least N such that for all n > N, 6, = 0*, Py~ a.s.

Let Ny be the lock-on time for estimator 8. Then, under Assumption 4,

E{N7T*} <o, Vke{l,....,K},0<a<p,

where 3 appears in Assumption 4.
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Performance of ¢8

If Assumptions 3 and 4 hold, then for each k € {1,..., K}, the proposed

index function e
Lt
gtk,n (yfa s ,y'l;) £ ,UI; +—,

is an Upper Confidence Bound (UCB)

If Assumptions 3 and 4 hold, then the regret of the proposed policy ¢%
satisfies

Rr(¢8) = o(T™),

for some § > 0.
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A MAB Problem for ARMA Processes

Consider a bandit system with reward process generated by the following
ARMA process

k k k
Xpr1 — /\an + w,

k _ Uk
yn_Xn

S: VHGZzo,k€{1,2}

where x5, yk wk € R, n € Zso, and wk is i.i.d. ~ N(0,042)1Lx§.

Assumptions:
@ The parameter space of the system contains two alternatives:

Ok = {05, 0k} 0k = (M, 0k), k€ {1,2}.

o For each system |\| < 1 and each process yX is stationary.
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A MAB Problem for ARMA Processes

Problem Description

At each step t,
@ the player chooses to observe a sample from machine k € {1, 2}

@ pays a cost vK equal to the squared minimum one step prediction error
of the next observation y,’:k given the past observations yf, ... ,y,’:k _
t t

The Expected Regret

T

: 2 .
SRS S
i=1 ’ !

where u; denotes the arm that is needed to be chosen at time i/, specified
by the proposed index policy ¢5.
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Preliminary results for ARMA Processes

The negative logarithmic likelihood function of the reward process can be
described as follows:

n n 1 o?n 1 o®
—log f(y ;)\):Elog27r+§|og( )\2)-1— }’12( /\2) !

+5 Z = Yili— 1 0_2

where

° yii—1 = E(yily™) = Ayi—1, and
® y; — yjji—1 is the prediction error process.
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Preliminary results for ARMA Processes

Prediction error process the true parameter under 6*

2
Vn=Yn = VYili-1 = Wn-1, Wp—1"~ N(0,0%).

The prediction error process under the incorrect parameter 6

n
€ = Yn — Yiji-1 = Vn + (A* - )\) Z)\*J_an—ja
J=1

Remarks:
@ v, is called the innovations process of y,, and it is i.i.d.

@ e, is called the pseudo-innovations process of y,, and it is a dependent
process.
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Verification of Assumptions 1,2, and 4

Concerning Assumption 1

Assuming that 6* # 6 for each linear system, Assumption 1 follows in each
case.

Concerning Assumption 2

We make the conjecture that for the set of likelihood functions specified by
the parameter set ©, Assumption 2 is satisfied.

v
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Verification of Assumptions 1,2, and 4

@ Consider each machine separately.

o Define

2 *2 2 _
A o 1—A of O 1
A":"'°g(ﬁ)+'°g<1—A2)+y1<1—x2)

V2

@ let V,=37, 5.
@ Define

E,2{0,# 0" 0m=06" Ym>n}

_ {i v}

o 2

i=2

> An} N{Ans1 = Vot N{An2 2 Vo2l N

v
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Verification of Assumptions 1,2, and 4

Assumption 4

e Conjecture: there exists a, 5 € R<¢ such that for all n € Z~o,

a

and hence Assumption 4 is satisfied.
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The index functions

Definition

2 T
k _

ETnk = & A2 + =% Cnk’ ke {12}

where &i is the ML estimate of the innovations process variance of

machine k.

Computation of 6% at stage T

where 06‘ is arbitrary.
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The Asymptotic Behaviour of the Expected Regret

For the ARMA problem under consideration, subject to Assumptions 2 and
4, the index policy ¢& specified by

_ sample from each process once if t < K,
b argmax{gtknk; ke{l,...,K}} ift>K,
L 4

is a UCB, and hence

i

.
Rr(¢%) = — Z ker?llnz} Evf k - Evub ?) = o(T**)
—il

is obtained, for some § > 0.
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Simulation of 10000 realizations for System 1

for 3 values of C

System 1 (S1)

©1 = {0} = (0.145,8),6% = (0.09,10)} 05 = 6}
927{92—025)92—01915} 05 = 03

The regret function for S1 with C=100 The regret for S1 with C=1000 The regret for S1 with C=10000

1000

100 1000(
—mean regret —mean regret

8000 8000 realizations of the regret 8000 realizations of the regret
6000y 6000/ 6000y

4000 4000f 4000y

2000 —mean regret 2000 2000

o —realizations of the regret|
0 1000 2000 3000 4000 5000 Uﬂ 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time [t] Time [t] m

Figure : C =100 Figure : C = 1000 Figure : C = 10000

The regret resulted from each realization is plotted in blue, and the regret
over all realizations in red.
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Simulation of 10000 realizations for System 2

for 3 values of C

System 2 (S2)

©1 = {6} = (0.145,8),62 = (0.09,10)} 65 = 6}
= {0} = (02,5).63 = (0.19,8.1)} 03 =63

x10° The regret for S2 with C=100 x10° The regret for S2 with C=1000

— mean regret —mean regret
—realizations for the regret| —realizations of the regret

x10° The regret for S2 with C=10000

—mean regret
—realizations of the regret

0 5000 10000 15000 [ 5000 10000 15000 0 5000 10000 15000
Time It] Time It1 Time It]

Figure : C =100 Figure : C = 1000 Figure : C = 10000

The regret resulted from each realization is plotted in blue, and the regret
over all realizations in red.
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Simulation of 10000 realizations for System 3

for 3 values of C

System 3 (S3)

©; = {6} = (0.145,8.09), 67 = (0.09,8.1)} 67 = 6}
0, = {63 = (02811)02 (0.19,8.1)} 02_92

x10° The regret of S3 with C=1000 x10° The regret of S3 with C=10000 x10° The regret of S3 with C=100000
8

=—mean regret =—mean regret =—mean regret
6 —realizations of the regret| s —realizations of the regret| 6 —realizations of the regret|
4 4 4
2 2 2
"0 5000 10000 15000 vO 5000 10000 15000 Dl.'l 5000 10000 15000

Time [t Time [t Time [t]
Figure : C = 1000 Figure : C = 10000 Figure : C = 100000

The regret resulted from each realization is plotted in blue, and the regret
over all realizations in red.
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Conclusion

@ We consider the MAB problem with time-dependent rewards that
depend on single parameters which lie in a known, finite parameter
space.

@ We propose the allocation rule ¢ that depends on consistent
estimators of the unknown parameters.

@ Under some assumptions, we have shown that ¢€ is a UCB and
R7(¢8) € o( T*+?) for some § > 0.

@ This result is suboptimal compared to other results in the literature,
but there an i.i.d. rewards condition is imposed.

@ ¢% is more flexible because it can be applied to a more general class of
MAB problems, including those with stochastically dependent and
time dependent reward processes.
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