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2 On sensitivity of restless bandit solutions

On the sensitivity of restless bandits solutions

to uncertainty in the models of the arms

Abstract

Restless multi-armed bandits (RMAB) are a popular framework for
modeling resource allocation and scheduling problems arising in vari-
ous applications. Such applications can be modeled as Markov decision
processes (MDP), but optimal or sub-optimal solution through dynamic
programming suffer from high complexity. RMAB provides a heuristic
solution, where the solution complexity scales linearly with the number
of alternatives. However, these heuristic solutions are derived under the
assumption that the model of all arms are known perfectly. In this paper,
we consider RMAB with uncertainty in the rewards and dynamics of
the arms. In such a setting, using a robust MDP solution is not possi-
ble due to high computational complexity. So, we consider a certainty
equivalence approach and bound the additional loss in performance due
to model inaccuracy. Our bounds are directly in terms of the model
uncertainty of each arm and we illustrate their use via examples.

Keywords: restless multi-armed bandits, model mismatch, Markov decision
process, certainty equivalence, Whittle index, Gittins index

1 Introduction

Markov decision processes (MDPs) are a popular framework for solving multi-
stage decision problems (Puterman, 2014). Traditional MDP models capture
aleatoric uncertainty as part of the model as a probability distribution over the
next state and instantaneous rewards. However, such models do not capture
epistemic uncertainty. One method to capture epistemic uncertainty is via the
framework of robust MDPs (White and Eldeib, 1994; Iyengar, 2005; Nilim and
El Ghaoui, 2005; Wiesemann et al, 2013; Tzortzis et al, 2015; Lam, 2016).
However, solving robust MDPs is NP hard and the solutions, which provide
worst case performance guarantees against all models in an uncertain set, are
often too pessimistic.

An alternative approach is to simply choose the optimal policy correspond-
ing to a nominal model from the uncertain set. Such an approach is often
called certainty equivalence in the systems and control literature or the plug-in
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estimator in the artificial intelligence literature. Unlike the robust MDP solu-
tion, the certainty equivalent solution does not provide worst case performance
guarantees. However, the certainty equivalent solution is computationally sim-
pler and, might provide a satisficing solution (Simon, 1956) in many cases,
especially when the epistemic uncertainty is not large.

In order to verify if a certainty equivalent solution is satisficing, we need
to characterize the sensitivity of the solution of an MDP to model uncer-
tainty. There is a rich literature on this topic (Whitt, 1978, 1979; Müller, 1997;
Asadi et al, 2018; Gelada et al, 2019; Kara and Yüksel, 2020) which charac-
terizes the sensitivity of the optimal solution of MDPs to model uncertainty.
However, directly using these results in a real world application, which typi-
cally has multiple components, can be challenging for two reasons. First, we
typically have uncertainty estimates of the dynamics and rewards of each com-
ponent while the sensitivity results for MDPs require uncertainty estimates
of the coupled model. Second, it is often not possible to compute an optimal
solution of a large MDP due to the curse of dimensionality. So, in practice,
one often uses a domain specific heuristic solution. So, one needs to generalize
the sensitivity results to provide sensitivity of heuristic solutions (rather than
optimal solutions) to model uncertainty. In this paper, we illustrate how to
circumvent these challenges for restless multi-armed bandits (RMAB) (Whit-
tle, 1988), which is a modeling framework used to model and solve resource
allocations and scheduling problems arising in various applications, including
communication networks, power systems, and machine maintenance.

In a RMAB, a decision maker controls the evolution of n alternatives or
arms. Each arm is a controlled Markov process which can be active or passive
at each time. The decision maker can only activate m arms, where m < n.
The objective is to determine which arms to activate at each time to maximize
the expected discounted cost over an infinite horizon. Such a problem can be
modeled as an MDP but obtaining an optimal solution is PSAPCE hard in
the number of arms (Papadimitriou and Tsitsiklis, 1999).

Motivated by the low-complexity index-based solution to the rested MAB
problem (Gittins and Jones, 1979), various low-complexity heuristic solutions
have been proposed for restless MAB as well. The most popular heuristic is the
Whittle index policy (Whittle, 1988), which has linear complexity in the num-
ber of alternatives. The Whittle index policy is optimal in some settings (e.g.,
when the arms which are not selected remain frozen (Gittins and Jones, 1979),
when the number of arms is asymptotically large (Weber and Weiss, 1990),
and when the model satisfies some separation conditions (Lott and Teneketzis,
2000)), and performs close to optimal in a variety of applications (Niño-Mora,
2007; Ansell et al, 2003; Glazebrook et al, 2005, 2006; Ayesta et al, 2010;
Akbarzadeh and Mahajan, 2019). In addition to the Whittle index policy, other
heuristic solutions to RMAB have also been proposed in the literature. These
include primal-dual index heuristics (Bertsimas and Niño-Mora, 2000), linear
programming based methods (Verloop, 2016; Zayas-Cabán et al, 2019; Gast
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et al, 2022), general Lagrangian relaxations (Hu and Frazier, 2017; Brown and
Smith, 2020; Hodge and Glazebrook, 2011; Killian et al, 2021).

However, the current literature assumes that the model of each arm is
known perfectly. This is not always true, especially in applications where the
models of the arms are estimated based on data. We are interested in the fol-
lowing question: how sensitive are heuristic solutions such as the Whittle index
policy to uncertainty in the model of the arms? In particular, if there is some
uncertainty in the model of the arms (which could be due to approximation
errors in modeling the rewards and dynamics of each arm), what is the loss
in performance in taking a certainty equivalence approach and following the
heuristic solution of the approximate model? This question is also relevant for
restless bandits with continuous state space, where model approximation may
be required to compute the heuristic solution.

For rested multi-armed bandits (i.e., when only one arm can be activated
at each time, and the arms which are not activated remain frozen), it is known
that the Gittins index policy is optimal (Gittins and Jones, 1979). The ques-
tion of sensitivity of the Gittins index to model mismatch has been investigated
in Katehakis and Veinott Jr (1987). However, the result and the proof tech-
nique of Katehakis and Veinott Jr (1987) rely on specific features of the rested
MAB settings and cannot be directly generalized to restless MABs. There
are also other results in the literature on approximate computation of Gittins
index (Ben-Israel and Fl̊am, 1990), but they are also not applicable to the
restless setting.

There is some work on the robust formulation for rested multi-armed
bandits Caro and Das Gupta (2015); Kim and Lim (2016); Cohen and Tree-
tanthiploet (2022). These results have been generalized to a certain class of
partially observed models in Kim (2016). However, as far as we are aware,
there are not results on the robust formulation for restless bandits.

Recently, there has been a significant interest in learning Whittle index
policies for RMAB (Meshram et al, 2017; Borkar and Chadha, 2018; Fu et al,
2019; Avrachenkov and Borkar, 2022; Robledo et al, 2022; Akbarzadeh and
Mahajan, 2022b). Most of these learn the Whittle index by using reinforce-
ment learning to learn a Q-function of an auxiliary MDP associated with the
computation of Whittle index. Alternative approaches to learning in restless
bandits are presented in Tekin and Liu (2012); Liu et al (2012), which learn
the arm with the largest average reward. However, these papers do not provide
an explicit answer to the sensitivity question that we are interested in.

Our main contributions are the following.
1. We formulate the question of sensitivity of a heuristic solution known as

Whittle index policy to model mismatch. In particular, we formalize how
to define model mismatch of an arm and characterize the sensitivity of
the Whittle index policy in terms of approximation errors in modeling
individual arms and a property of the value function of the optimal policy.

2. Our results depend on the choice of metric on probability spaces. We con-
sider a class of metrics knows as integral probability metrics (IPMs) and
focus on two IPMs: total variation distance and Wasserstein distance.
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For these IPMs, we provide a computable upper bound on the sensitiv-
ity of the heuristic solution which depends on the approximation errors
in modeling individual arms and properties of the reward functions and
transition kernels of the arms.

The rest of the paper is organized as follows. In Sec. 2, we present the
model and the problem formulation and state the main results. We present
some examples of our results in Sec. 3. In Sec. 4, we present the proofs of the
main results and conclude in Sec. 5.

Notation Used

We use uppercase letters to denote random variables (e.g. S,A, etc.), lowercase
letters to denote their realizations (e.g. s, a, etc.) and sans serif letters to denote
sets (e.g. S,A, etc.). We also use superscripts (e.g. Si, Ai, etc. for arm i) to
denote quantities for a specific arm. For any set X, ∆(X) is used to denote the
space of probability distributions on X. P and E denote the probability of an
event and expectation of a random variable, respectively. For an integer n, we
use [n] to denote the set of integers from 1 to n.

Given a set S and a function f : S → R, we use span(f) to denote the span
of f , i.e., span(f) = sups,s′∈S |f(s) − f(s′)| and we use ∥f∥∞ to denote the
supremum norm of function f , i.e., ∥f∥∞ = sups∈S f(s).

When (S, d) is a metric space we use Lip(f) to denote the Lipschitz constant
of f , i.e.,

Lip(f) = sup
s,s′∈S

|f(s)− f(s′)|
d(s, s′)

.

If this constant exists and is finite, then f is said to be Lip(f)-Lipschitz.

2 Problem formulation and main results

The results of this paper are applicable to models with discrete or continuous
state spaces. For ease of exposition, we present the model and results for
continuous state spaces. They can be easily translated to models with discrete
state spaces.

2.1 Restless multi-armed bandits

A restless multi-armed bandit (RMAB) is a decision making problem where
there are n alternatives or arms. Each arm i, i ∈ [n], is a controlled Markov
process αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, r

i⟩, where Si denotes the state space
which is assumed to be a compact set, {0, 1} is the action space, pi(a), a ∈
{0, 1}, denotes the transition density from Si to Si when action a is chosen,
and ri : Si × {0, 1} 7→ R denotes the per-step reward which is assumed to
be uniformly bounded and continuous in Si. For some of the results, we will
assume that, for each arm i ∈ [n], the state space Si is a metric space and use
di to denote the metric on Si.
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The system operates in discrete time. We use Si
t ∈ Si and Ai

t ∈ {0, 1} to
denote the state and action of arm i at time t. We use St = (S1

t , . . . , S
n
t ) and

At = (A1
t , . . . , A

n
t ) to denote the global state and actions of all arms at time t.

Each component of the global state evolves in a controlled Markov manner
independently of other components. In particular, for any measurable subsets
Bi ⊂ Si, i ∈ [n], we have

P

(
St+1 ∈

∏

i∈[n]

Bi

∣∣∣∣ S1:t = s1:t,A1:t = a1:t

)
=

∏

i∈[n]

[∫

Bi

pi(sit+1 | sit, ait)dsit+1

]
.

At each time, a decision maker observes the global state St and can acti-
vate (i.e., select action Ai

t = 1) for at most m < n arms. The decision
maker chooses its actions according to a time-homogeneous Markov policy
π : S → A(m), where S =

∏
i∈[n] S

i denotes the set of all global states and

A(m) :=
{
a ∈ {0, 1}n : ∥a∥1 ≤ m

}
denotes the set of feasible actions. The per-

formance of any Markov policy π starting from an initial state s0 ∈ S is given
by

V π(s0) = Qπ(s0, π(s0)), (1)

where

Qπ(s0,a0) = Eπ

[ ∞∑

t=0

γt
∑

i∈[n]

ri(Si
t , A

i
t)

∣∣∣∣ S0 = s0,A0 = a0

]
, (2)

where γ ∈ (0, 1) denotes the discount factor and ri ∈ [0, 1]. The objective is to
find a Markov policy π which maximizes V π(s0).

The decision problem formulated above is a Markov decision process
(MDP) and can be solved using dynamic programming Puterman (2014).
However, the dynamic programming solution suffers from the curse of dimen-
sionality because both the state space S and action space A(m) grow
exponentially with the number of arms. To avoid the curse of dimensionality,
a popular heuristic is to use the Whittle index policy (Whittle, 1988), which
has a linear complexity in the number of arms. We provide an overview of the
Whittle index policy below.

2.2 Indexability and the Whittle index policy

Consider an arm, say arm αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, r
i⟩ as described

before. For any λ ∈ R, consider a modified version of the arm denoted by
αi
λ = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, r

i
λ⟩, where for all si ∈ Si, ai ∈ {0, 1}, we have

riλ(s
i, ai) := ri(si, ai) + λai.
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Now, consider the problem of individually controlling the modified arm
αi
λ. This auxiliary problem is an MDP and the optimal solution is given by

the following dynamic program: find V i,⋆
λ : Si → R that satisfies the Bellman

optimality equation:

V i,⋆
iλ (si) = max

ai∈{0,1}

{
riλ(s

i, ai) + γ

∫

Si

pi(s̄i | si, ai)V i,⋆
λ (s̄i)ds̄i

}
, ∀si ∈ Si.

(3)
Let πi,⋆

λ (si) denote the arg max of the right hand side of (3), where we choose

πi,⋆
λ (si) = 1 when the arg max is not unique. Then, standard results from

Markov decision theory (Puterman, 2014) imply that the policy πi,⋆
λ is optimal

for controlling the modified arm αi
λ.

Define the active set Πi
λ to be the states where the active action (ai = 1)

is optimal, i.e., Πi
λ := {si ∈ Si : πi

λ
⋆
= 1}.

Definition 1 (Indexability). An arm αi is indexable if the active set Πi
λ is

non-increasing in λ, i.e., for any λ1, λ2 ∈ R such that λ1 ≤ λ2, we have
Πi

λ1 ⊆ Πi
λ2 .

Definition 2 (Whittle index). The Whittle index ωi : Si → R of an indexable
arm αi is defined as follows. for a state si ∈ Si, ωi(si) is the smallest value of
λ for which si is part of the active set Πi

λ, i.e., ω(s
i) = inf{λ ∈ R : si ∈ Πi

λ}.

Alternatively, the Whittle index ωi(si) is a value of the penalty λ for which
the optimal policy is indifferent between taking the active and the passive
action when the arm is in state si.

A restless bandit problem is said to be indexable if all arms are indexable.
For an indexable restless bandit problem, theWhittle index policy is a heuristic
policy which is defined as follows: First, we compute the Whittle indices of all
arms {αi}i∈[n] offline. Then, at each time, we obtain the Whittle indices of the
current state of all arms and play the arms with the m largest Whittle indices.

Various sufficient conditions for checking indexability and computing the
Whittle index have been proposed in the literature. See Bertsimas and Niño-
Mora (2000); Glazebrook et al (2005, 2006); Niño-Mora (2007); Akbarzadeh
and Mahajan (2019); Gast et al (2022) and references therein. Although the
Whittle index policy is a heuristic, as mentioned in the introduction, it is opti-
mal in some settings Gittins and Jones (1979); Weber and Weiss (1990); Lott
and Teneketzis (2000) and performs close to optimal in a variety of appli-
cations (Niño-Mora, 2007; Ansell et al, 2003; Glazebrook et al, 2005, 2006;
Ayesta et al, 2010; Akbarzadeh and Mahajan, 2019).

2.3 Problem formulation: Model mismatch in RMAB

We start by defining a class of metrics on probability measures known as
integral probability metrics (IPM) (Müller, 1997).
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Definition 3. Let (X,G) be a measurable space and F denote a class of
uniformly bounded measurable functions on (X,G). The integral probability
metric (IPM) between two probability distributions µ, ν ∈ ∆(X) with respect
to the function class F is defined as

dF(µ, ν) := sup
f∈F

∣∣∣∣
∫

X

fdµ−
∫

X

fdν

∣∣∣∣.

Some examples of IPM are total variation distance, Wasserstein distance,
Kolmogorov distance, Bounded-Lipschitz distance, and maximum mean dis-
crepancy. For total variation distance, F = {f : 1

2 span(f) ≤ 1} =: FTV;
for Wasserstein distance, F = {f : Lip(f) ≤ 1} =: FW. We refer the reader
to Subramanian et al (2022) for details about other examples.

Given a function class F and a function f (not necessarily in F), the
Minkowski functional (Schechter, 1996) of f with respect to F is defined as:

ρF(f) := inf{ρ ∈ R>0 : ρ−1f ∈ F}. (4)

When F = FTV (i.e., dF is the total variation distance), ρF(f) = 1
2 span(f);

and when F = FW (i.e., dF is the Wasserstein distance), ρF(f) = Lip(f). A
key implication of the definition of Minkowski functional is the following: for
any function f , not necessarily in function class F,

∣∣∣∣
∫

X

fdµ−
∫

X

fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν), (5)

We now formalize the notion of approximate restless bandit model.

Definition 4. Consider two arms α = ⟨S, {0, 1}, {p(a)}a∈{0,1}, r⟩ and

α̂ = ⟨Ŝ, {0, 1}, {p̂(a)}a∈{0,1}, r̂⟩ defined on the same state space different state

spaces S and Ŝ. We are also given a measurable aggregation function ϕ : S → Ŝ.
Given a function space F and positive constants ε and δ, arm α̂ is called an
(ε, δ)-approximation of arm α if for all s ∈ S and a ∈ {0, 1}:

∣∣r(s, a)− r̂(ϕ(s), a)
∣∣ ≤ ε, dF

(
p̃(·|s, a), p̂(·|ϕ(s), a)

)
≤ δ,

where p̃ accumulates the probabilities of the true model in the aggregated
state space in the following sense: for any Borel subset B̂ of Ŝ

p̃(B̂ | s, a) :=
∫

s′∈S

1{ϕ(s′) ∈ B̂}p(ds′|s, a).
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Lemma 1. Let f̂ : Ŝ → R and f = f̂ ◦ ϕ and p̃, p be as described previously.
Then we have for all s ∈ S and a ∈ {0, 1}:

∫

ŝ′∈Ŝ

f̂(ŝ′)p̃(dŝ′ | s, a) =
∫

s′∈S

f(s′)p(ds′ | s, a).

We fix the function space F and consider the following setup.

Approximation setup. Given a RMAB {αi}i∈[n], where αi = ⟨Si, {0, 1},
{pi(a)}a∈{0,1}, ri⟩, consider an approximate RMAB {α̂i}i∈[n], where α̂i =

⟨Ŝi, {0, 1}, {p̂i(a)}a∈{0,1}, r̂
i⟩ with aggregation function ϕi : Si → Ŝi such that

arm α̂i is an (εi, δi)-approximation of arm αi.

Let Ŝ =
∏

i∈[n] Ŝ
i. Define aggregation function ϕ : S → Ŝ given by

ϕ(s1, . . . , sn) = (ϕ1(s1), . . . , ϕn(sn)). For any policy π̂ : Ŝ → A(m) and initial
state s, let V̂ π̂(ŝ) denote the performance of policy π̂ in RMAB {α̂i}i∈[n]. Let
π = π̂ ◦ ϕ denote the “lifting” of the approximate policy to the original space.
let V π(s) denote the performance of π in RMAB {αi}i∈[n]. Let π∗ denote
the optimal policy for the true model {αi}i∈[n] and let π̂∗ denote the optimal
policy for the approximate model {α̂i}i∈[n].

Definition 5. The sensitivity of any approximate policy π̂ : Ŝ → A(m) is

defined as Gapπ − Ĝap
π̂
, where π = π̂ ◦ ϕ, Gapπ := ∥V π∗ − V π∥∞ is the sub-

optimality gap in using lifted approximate policy π in the true model {αi}i∈[n]

and Ĝap
π̂
:= ∥V̂ π̂∗ − V̂ π̂∥∞ is the sub-optimality gap in using approximate

policy π̂ in the approximate model {α̂i}i∈[n].

Let µ̂ be the Whittle index policy for the approximate model {α̂i}i∈[n]. For
the policy to be meaningful, we impose the following assumption.

Assumption 1. All arms {α̂i}i∈[n] are indexable.

We are interested in the following approximation characterization.

Problem 1. Consider the approximation setup described above under

Assumption 1. Characterize the sensitivity Gapµ̂◦ϕ− Ĝap
µ̂
, i.e., the additional

loss in performance when using the heuristic solution corresponding to an
approximate model in the true model, in terms of the approximation errors
{(εi, δi)}i∈[n].

Remark 1. A solution to Problem 1 also provides a solution to the robust
RMAB problem. In particular, consider a setting where we do not know the
exact model of the arms, but know that the RMAB belongs to a collection
A of RMAB models, where all models in A have the same state spaces but
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different dynamics and rewards. Suppose {α̂i}i∈[n] is a nominal model (not
necessarily in A). Let {(εi, δi)}i∈[n] be such that for all {αi}i∈[n] ∈ A, and each
i ∈ [n], the arm α̂i is an (εi, δi)-approximation of arm αi. Then the solution to
Problem 1 also provides a bound on the additional loss in performance when
using a heuristic solution of the nominal model {α̂i}i∈[n] instead of using the
heuristic solution of the true (but unknown) model in A.

2.4 Main result

For any Markov policy π̂ : Ŝ → A(m), define

βπ̂
F :=

ε+ γδρF(V̂
π̂)

1− γ
,

where (ε, δ) =
(∑

i∈[n] ε
i,
∑

i∈[n] δ
i
)
. Then we have the following.

Theorem 1. For the approximation setup of Sec. 2.3, under Assumption 1,
we have

∥Qπ∗
−Qµ̂◦ϕ∥∞ − ∥Q̂π̂∗

− Q̂µ̂∥∞ ≤ 3βπ̂∗

F + βµ̂
F (6)

and

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞ ≤ 3βπ̂∗

F + βµ̂
F . (7)

The proof is given in Sec. 4.
The results of Theorem 1 can be interpreted as follows. Suppose the

heuristic solution is computed using a synthetic/simulation-based approxi-
mate model of the real-world. The results of Theorem 1 then characterize the
sensitivity of the heuristic solution to model mismatch. In particular, if the

synthetic model were accurate, we would incur a loss less than Ĝap
µ̂
. The

results of Theorem 1 shows that when the synthetic model is not accurate, an
additional loss of Emodel := 3βπ̂∗

F + βµ̂
F is incurred. The overall loss in using

the heuristic solution of the approximate model in the real-world is less than

Gapµ̂◦ϕ ≤ Ĝap
µ̂
+ Emodel.

2.5 Discussion of the results

2.5.1 The dependence on IPM

The upper bound of Theorem 1 depends on the IPM in two ways. First, the
parameter δ (i.e. the degree of closeness of the approximate dynamics to the
true dynamics) depends on the IPM. In addition, the ρF(·) term depends on
the choice of IPM. See Sec. 3.1 for an example on how the upper bound depends
on the choice of the IPM.
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2.5.2 The role of indexability

When the heuristic solution is the Whittle index policy, Theorem 1 requires
only the approximate model to be indexable (Assumption 1). The original
model is not required to be indexable. This is a useful feature in settings where
the original model is not known and only an approximate model is available.

2.5.3 The special case of Gittins index

In the rested case (i.e., when only one arm can be activiated at each time
and the arms which are not activated remain frozen), the Whittle index policy
reduces to the Gittins index policy and is optimal. Therefore, in (7), V̂ π̂∗

= V̂ µ̂

and Epolicy = 0. Thus, Theorem 1 also provides an approximation guaran-
tee for the rested RMAB which is different from the stopping-time based
approximation guarantee in Katehakis and Veinott Jr (1987).

2.5.4 Approximate optimality of Gittins index for “viscous
when passive” restless bandits

Consider a restless bandit problem {αi}i∈[n], where αi =
⟨Si, {0, 1}, {pi(a)}a∈{0,1}, r

i⟩ is such that the passive dynamics {pi(0)}i∈[n]

are close to being frozen, i.e., given a function class F, we have

dF(p
i(· | s, 0), idi(· | s)) ≤ δi, ∀s ∈ Si, i ∈ [n],

where id(· | s) is a Dirac delta measure centered at s. We call such a model
viscous restless bandits. Note that if δi = 0 for all i ∈ [n], then the above model
reduces to the classical rested multi-armed bandit model, for which the Gittins
index is optimal. However, when δi ̸= 0, then we are in general restless bandit
settings and very little is known regarding the optimality of an index solution.

However, if m = 1 and {δi}i∈[n] are small, then we can approximate the
model {αi}i∈[n] by a model {α̂i}i∈[n], where the approximate arm α̂i has
the same state space and the same dynamics under active action as arm αi,
but the dynamics under the passive action is id (thus, frozen). Thus, we can
approximate the “viscous when passive” bandits by rested badits.

Let π̂∗ be the Gittins index policy for {α̂i}i∈[n], which is optimal for that
model. The result of Theorem 1 shows that

∥V π∗
− V π̂∗◦ϕ∥∞ ≤ 3βπ̂∗

F + βπ̂∗

F .

This quantifies the loss in performance incurred by the Gittins index policy in
a “viscous when passive” restless bandit model.

2.6 Instance independent bounds

The bounds of Theorem 1 depend on the properties of the optimal value func-
tion V π∗

, which can be difficult to compute. We now present looser upper
bounds which do not explicitly depend on V π∗

.
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Proposition 1. When F = FTV (i.e. dF is the total variation distance) and
Assumption 1 holds, then we have

∥Qπ∗
−Qµ̂◦ϕ∥∞ − ∥Q̂π̂∗

− Q̂µ̂∥∞ ≤ 4ε

(1− γ)

+
3γδ span(r̂)

2(1− γ)2
+

γδ span(V̂ µ̂)

2(1− γ)
(8)

and

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞ ≤ 4ε

(1− γ)

+
3γδ span(r̂)

2(1− γ)2
+

γδ span(V̂ µ̂)

2(1− γ)
, (9)

where (ε, δ) =
(∑

i∈[n] ε
i,
∑

i∈[n] δ
i
)
and span(r̂) ≤

∑
i∈[n] span(r̂

i).

See Sec. 4.4 for proof.
We now define a property of an arm.

Definition 6. Consider the function class FW, an arm αi =
⟨Si, {0, 1}, {pi(a)}a∈{0,1}, r

i⟩ and a metric di on Si. If

Lri := sup
s,s′∈Si

a∈{0,1}

|ri(s, a)− ri(s′, a)|
di(s, s′)

< ∞,

Lpi := sup
s,s′∈Si

a∈{0,1}

dFW(pi(· | s, a), pi(· | s′, a))
di(s, s′)

< ∞,

then the arm αi is said to be (Lri ,Lpi)-Lipschitz.

Similarly, consider the approximate arm α̂i = ⟨Ŝi, {0, 1}, {p̂i(a)}a∈{0,1}, r̂
i⟩

and a metric d̂i on Ŝ. We define (Lr̂i ,Lp̂i) analogously to Definition 6. If both
of these are finite, then the arm α̂i is said to be (Lr̂i ,Lp̂i)-Lipschitz.

Proposition 2. When F = FW (i.e. dF is the Wasserstein distance), suppose
Assumption 1 holds, and for each i ∈ [n], arm α̂i is (Lr̂i ,Lp̂i)-Lipschitz with
Lp̂i < γ−1, we have

∥Qπ∗
−Qµ̂◦ϕ∥∞ − ∥Q̂π̂∗

− Q̂µ̂∥∞ ≤ 4ε

(1− γ)

+
3γδLr̂

(1− γ)(1− γLp̂)
+

γδ Lip(V̂ µ̂)

(1− γ)
(10)
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and

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞ ≤ 4ε

(1− γ)

+
3γδLr̂

(1− γ)(1− γLp̂)
+

γδ Lip(V̂ µ̂)

(1− γ)
, (11)

where (ε, δ) =
(∑

i∈[n] ε
i,
∑

i∈[n] δ
i
)
, Lr̂ ≤ maxi∈[n] Lr̂i and Lp̂ ≤

maxi∈[n] Lp̂i .

See Sec. 4.5 for proof.

Remark 2. In order to compute the Lipschitz constant of V̂ µ̂ in (10) and (11),

we need a metric on Ŝ. This metric is chosen as d̂(ŝ1, ŝ2) =
∑

i∈[n] d̂
i(ŝi1, ŝ

i
2).

Remark 3. The instance independent upper bounds of Propositions 1 and 2
still depend on the properties of the value function V̂ µ̂. In many applications,
this value function is computed numerically to characterize the performance
of the proposed heuristic policy. If this value function is not available, we can
upper bound its properties as follows.
1. In Proposition 1, we can show that span(V̂ µ̂) ≤ span(r̂)/(1 − γ) by

following an argument similar to that used in the proof of Proposition 1.
2. In Proposition 2, using (Hinderer, 2005, Theorem 4.2), we can show that

if the heuristic policy µ̂ is Lipschitz, then

Lip(V̂ µ̂) ≤ Lr̂(1 + Lµ̂)

1− γLp̂(1 + Lµ̂)
,

where Lµ̂ is the Lipschitz constant of the policy µ̂, and Lp̂(1+Lµ̂) < γ−1.

3 Some illustrative examples

In this section, we provide some examples to illustrate our results.

3.1 An example with finite state space

Consider an RMAB with two arms αi = ⟨S, {0, 1}, {P i(ai)}ai∈{0,1}, r
i⟩, i ∈

{1, 2}, where S = {1, 2, 3} shown in Fig. 1a. Suppose the arms are approx-
imated by ⟨S, {0, 1}, {P̂ i(ai)}ai∈{0,1}, r̂

i⟩ shown in Fig. 1b. Note that since

Ŝ = S, we take ϕ(s) = s. Consider the heuristic solution to be the Whittle
index policy. It can be verified that the approximate model is indexable. Thus,
Assumption 1 is satisfied. We used the open source python library provided
in Gast et al (2023) to verify that the given approximate model is indexable.
Thus, Assumption 1 is satisfied.
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P (0) =



0.2 0.3 0.5

0.1 0.5 0.4

0.4 0.3 0.3


 , P (0) =



0.1 0.6 0.3

0.2 0.7 0.1

0.1 0.8 0.1


 ,

P (1) =



0.4 0.4 0.2

0.3 0.3 0.4

0.2 0.2 0.6


 , P (1) =



0.50 0.40 0.10

0.30 0.60 0.10

0.25 0.55 0.20


 ,

r =



0.60 0.40

0.88 0.60

1.00 0.80


 , r =



0.52 0.64

0.44 0.96

0.76 0.44


 .

Arm 1 Arm 2

1

(a) True Model

P̂ (0) =



0.19 0.29 0.52

0.11 0.51 0.38

0.41 0.29 0.30


 , P̂ (0) =



0.09 0.62 0.29

0.21 0.69 0.10

0.12 0.79 0.09


 ,

P̂ (1) =



0.39 0.39 0.22

0.29 0.29 0.42

0.21 0.19 0.60


 , P̂ (1) =



0.48 0.42 0.10

0.31 0.59 0.10

0.24 0.55 0.21


 ,

r̂ =



0.596 0.404

0.872 0.596

0.996 0.792


 , r̂ =



0.512 0.636

0.432 0.968

0.756 0.448


 .

Arm 1 Arm 2

1

(b) Approximate Model

Fig. 1: The true and approximate model for the example of Sec. 3.1

Let ω̂i(s) denote the Whittle index (for the approximate model) of arm i
in state s. We compute these using the modified adaptive greedy algorithm
(Akbarzadeh and Mahajan, 2022a), and they are given by

ω̂1(1) = −0.308, ω̂1(2) = −0.309, ω̂1(3) = −0.140,

ω̂2(1) = 0.009, ω̂2(2) = 0.547, ω̂2(3) = −0.410.

The Whittle index policy µ̂ is given by

µ̂(s1, s2) = argmax
i∈{1,2}

ω̂i(si). (12)

We are interested in bounding the performance loss in using the Whittle index
policy for the approximate model, in the true model. For that matter, we first
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compute the value function of the Whittle index policy (in the true model)
using the policy evaluation equation (Puterman, 2014). The value function is
given by1

V µ̂◦ϕ =



16.172 16.562 16.165
16.474 16.864 16.401
16.509 16.899 16.638


 .

Since the model is small, we can compute the optimal value function (of the
true model), which we do using the value iteration algorithm (Puterman, 2014).
The optimal value function is given by

V π∗
=



16.386 16.777 16.647
16.691 17.081 16.951
16.725 17.116 16.986


 .

Thus, the Whittle index policy has a suboptimality gap of ∥V π∗ − V µ̂◦ϕ∥∞ =
0.550. Note that in practice we do not have access to the true model, so
we cannot compute the suboptimality gap ∥V π∗ − V µ̂◦ϕ∥∞. The results of
Theorem 1 provide a method to bound the suboptimality gap.

We first compute the values of approximate errors (ε, δ) for arms 1 and 2
which are shown in Table 1 (for F = FW, we use d(ŝi1, ŝ

i
2) = |ŝi1 − ŝi2| as the

metric on Ŝ). We also compute the value function of the Whittle index policy

Parameter Arm 1 Arm 2 Overall

ε 0.008 0.008 0.016
δFTV 0.02 0.02 0.04
δFW 0.03 0.03 0.06

Table 1: Parameters involved in Theorem 1 for Example 3.1.

and the optimal value function (for the approximate model) using d(ŝ1, ŝ2).
These are given by

V̂ µ̂ =



16.142 16.534 16.133
16.430 16.822 16.361
16.473 16.865 16.587


 and V̂ π̂∗

=



16.349 16.741 16.597
16.641 17.033 16.889
16.683 17.075 16.931


 .

Thus, the Whittle index policy has a suboptimality gap of ∥V̂ π̂∗ − V̂ µ̂∥∞ =
0.528 in the approximate model. Note that since we have access to the approx-
imate model, the above value functions can be computed in practice allowing
us to estimate the suboptimality gap in the approximate model. Now, we use
the results of Theorem 1 to bound the suboptimality gap in the true model.

1The value function V µ̂◦ϕ is a function from S1 × S2 → R. We represent it as a matrix, where
the (i, j)-th element corresponds to the value V µ̂◦ϕ(i, j).
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We first consider the case when F = FTV. In this case, ρF(·) = 1
2 span(·).

Thus, the result (7) of Theorem 1 simplifies to

∥V π∗
− V µ̂◦ϕ∥∞

≤ 4ε

(1− γ)
+

3γδ span(V̂ π̂∗
)

2(1− γ)
+

γδ span(V̂ µ̂)

2(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4× 0.016

(1− 0.9)
+

3× 0.9× 0.04× 0.726

2(1− 0.9)
+

0.9× 0.04× 0.733

2(1− 0.9)
+ 0.528

≤ 1.163 + 0.528 = 1.691.

Now consider the case when F = FW. In this case, ρF(·) = Lip(·). Thus, the
result (7) of Theorem 1 simplifies to

∥V π∗
− V µ̂◦ϕ∥∞

≤ 4ε

(1− γ)
+

3γδ Lip(V̂ π̂∗
)

(1− γ)
+

γδ Lip(V̂ µ̂)

(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4× 0.016

(1− 0.9)
+

3× 0.9× 0.06× 0.392

(1− 0.9)
+

0.9× 0.06× 0.461

(1− 0.9)
+ 0.528

≤ 1.524 + 0.528 = 2.052.

Thus, in this example, we obtain a tighter bound by using F = FTV. The
above calculations show how the result of Theorem 1 can be useful in bounding
the suboptimality gap of the Whittle index policy when the true model is not
known.

3.2 An example with continuous state space

We now consider a model for machine maintenance with n machines and
m repair persons. Each machine has a state s ∈ S := [0, 1], where s = 0
denotes a machine in a pristine state and s = 1 denotes a completely deteri-
orated machine. Active action a = 1 corresponds to a repair person servicing
a machine in which case a per-step cost of ci is incurred and the state of the
serviced machine resets to a pristine state. Passive action a = 0 corresponds to
the machine not being serviced in which case a per-step cost of ξis is incurred,
where ξi is machine dependent coefficient and the state s deteriorates to a
worse state in [s, 1] uniformly at random.

Thus,

ri(si, 0) = −ξisi, ri(si, 1) = −ci,

pi(·|si, 0) = U(si, 1), pi(·|si, 1) = δD(·),

where i ∈ {1, 2}, si ∈ S, U(x, y) denotes a uniform distribution on the interval
[x, y], and δD(·) is the Dirac delta distribution centered at origin.
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Consider the heuristic solution to be the Whittle index policy. Suppose we
want to compute the Whittle index by discretization. In particular, we consider
a piecewise constant approximation of the model as follows. We divide the
interval [0, 1] into H subintervals

[
0, 1

H

)
∪
[
1
H , 2

H

)
∪ · · · ∪

[
1− 1

H , 1
]

and consider the centers of each interval given by

Ŝ =
{

1
2H , 3

2H , . . . , 2H−1
2H

}
.

Consider a quantization function ϕ : S → Ŝ, which maps any point to its closest
point in Ŝ, i.e.,

ϕ(s) =





1
2H , if s ∈

[
0, 1

H

)
3

2H , if s ∈
[
1
H , 2

H

)

...
...

2H−1
2H , if s ∈

[
1− 1

H , 1
]

We then consider H = 100 and construct approximate arms α̂i =
⟨Ŝ, {0, 1}, {p̂i(a)}a∈{0,1}, r̂

i⟩, where i ∈ {1, 2} and we have that for any ŝi ∈ Ŝ

p̂i(ŝi+|ŝi, 0) =

{
1

k(ŝi) , if si+ > si

0 otherwise
, p̂i(ŝi+|ŝi, 1) =

{
1 if ŝi+ = 0

0 otherwise.

where k(ŝi) is a normalizing factor and

r̂i(ŝi, 0) = ri(ŝi, 0) = −ξiŝi, r̂i(si, 1) = −ci.

Since the approximate model satisfies the restart property of Akbarzadeh
and Mahajan (2022a, 2019), it is indexable. Thus, Assumption 1 is satisfied.
We now consider two instances of this model.

3.2.1 Case 1: An illustrative small-scale example

We consider n = 2 and m = 1 and take ξ1 = 1.0, ξ2 = 0.5, c1 = 0.7, c2 = 0.3
and γ = 0.9. Since the approximate arms have a finite state space, we can use
the modified adaptive greedy algorithm of Akbarzadeh and Mahajan (2019)
to compute the Whittle indices ω̂i(ŝ), i ∈ [n], of the approximate model. The
computed indices are shown in Fig. 2.

To compute the sub-optimality gap, we first compute the values of approx-
imate errors (ε, δ) for arms 1 and 2 which are shown in Table 2 (for F = FW,

we use d(s, s′) = |s− s′| as the metric on S and d̂(ŝ, ŝ′) = |ŝ− ŝ′| as the metric

on Ŝ).
The state space of the approximate model is 1002, which is not too large.

So, it is possible to compute the value function of the Whittle index policy V̂ µ̂,
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Fig. 2: Whittle indices ω̂ plotted for all states for the example of Sec. 3.2.1.

Parameter Arm 1 Arm 2 Overall

ε 0.005 0.0025 0.0075
δFW 0.005 0.005 0.01

Table 2: Approximation errors for the example of Sec. 3.2.1.

(a) V̂ µ̂ (b) V̂ π̂∗

Fig. 3: Value functions V̂ µ̂ and V̂ π̂∗
plotted for all states for the example of

Sec. 3.2.1.

which we do using the policy evaluation equation (Puterman, 2014). The value
function can be visualized by the 3D plot in Fig. 3a. We can also compute
the optimal value function of the approximate model V̂ π̂∗

using the value
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iteration algorithm (Puterman, 2014). The value function can be visualized by
the 3D plot in Fig. 3b. By comparing these two value functions, we get that
the Whittle index policy has a suboptimality gap of ∥V̂ π̂∗ − V̂ µ̂∥∞ = 0.295 in
the approximate model.

We can now bound the suboptimality gap in the true model using (7) of
Theorem 1:

∥V π∗
− V µ̂◦ϕ∥∞

≤ 4ε

(1− γ)
+

3γδ Lip(V̂ π̂∗
)

(1− γ)
+

γδ Lip(V̂ µ̂)

(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞ (13)

≤ 4× 0.0075

(1− 0.9)
+

3× 0.9× 0.01× 1.4

(1− 0.9)
+

0.9× 0.01× 4.0

(1− 0.9)
+ 0.295

= 0.3 + 0.378 + 0.36 + 0.295

= 1.333 (14)

Note that the difference in suboptimality gaps

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V π̂∗

− V̂ µ̂∥∞ = 1.038

To put this bound in perspective, we note that V̂ µ̂ ∈ [−4.8,−5.5]. Thus,
the sensitivity of Whittle index policy to discretization is around 20%, which
suggests that a finer discretization would be needed in this case.

3.2.2 Case 2: Large-scale example

We consider n = 100 and m = 40 and take a randomly generated instance
where ξi ∼ U(0, 1), ci ∼ U(0, 1), and γ = 0.9. We compute the Whittle index
of each arm using the algorithm proposed in Gast et al (2023).

As in Case 1, we have εi = ξi/2H and δi = 1/2H. For our randomly
sampled instance, we obtain

ε =
∑

i∈[n]

εi = 0.2203, δ =
∑

i∈[n]

δi = 0.5

However, the state space of the approximate model is 100100, so it is not
possible to compute V̂ µ̂ or V̂ π̂∗

as we did in the small scale model. So, we
focus on the distance of the sensitivity gap of the true and the approximate
model and bound or approximate Lip(V̂ π̂∗

) and Lip(V̂ µ̂) respectively.
For Lip(V̂ π̂∗

), we use the upper bound used in Prop. 2. We first compute
(Lr̂i ,Lp̂i) for each arm i ∈ [n] using Definition 6. We can then compute (Lr̂,Lp̂)
for the MDP corresponding to our randomly sampled instance using Lemma 4
(with k = ∞) as

Lr̂ ≤ max
i∈[n]

Lr̂i = 0.9905, Lp̂ ≤ max
i∈[n]

Lp̂i = 0.5.
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Then, from (Hinderer, 2005, Theorem 4.2), we get that

Lip(V̂ π̂∗
) ≤

L
(k)
r̂

(1− γL
(k)
p̂ )

.

We take a different approach to approximate Lip(V̂ µ̂). Instead of policy
evaluation (which is intractable), we approximate V̂ µ̂ with a neural network.
To train the neural network, randomly sample Ne = 10, 000 initial conditions.
For each initial condition ŝ, we sample Se = 50 trajectories, each of length
T = 50. Note that 0.950 ≈ 5 × 10−3, which is small in comparison to the
total return, so we can approximate the infinite horizon return by the return
of the finite length trajectory. Thus, we approximate V̂ µ̂(ŝ) by averaging the
discounted returns of the Se trajectories. Then, we train a neural network using
batch gradient descent to approximately learn V̂ µ̂. The hyper-parameters used
for training are given in Appendix D.

Given the neural network to approximate V̂ µ̂, we approximate Lip (V̂ µ̂) by
taking NL = 10, 000 randomly generated pairs of initial conditions ŝ1 and ŝ2
maximizing ∥V̂ µ̂(ŝ1)− V̂ µ̂(ŝ2)∥1/∥ŝ1 − ŝ2∥1 over these initial conditions. Our
calculations give Lip(V̂ µ̂) ≈ 0.2103.

We can now bound the suboptimality gap in the true model using (7) of
Theorem 1:

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4ε

(1− γ)
+

3γδLr̂

(1− γ)(1− γLp̂)
+

γδ Lip(V̂ µ̂)

(1− γ)

=
4× 0.2203

(1− 0.9)
+

3× 0.9× 0.5× 0.9905

(1− 0.9)(1− 0.9× 0.5)
+

0.9× 0.5× 0.2103

(1− 0.9)

= 8.812 + 24.312 + 0.9464 = 34.0704.

To put this bound in perspective, we note that since the reward of each arm is
bounded within [0, 1], the value function V π∗

is upper bounded by n/(1−γ) =
1000. Assuming that the true value function is about 500 (which is half of the
value maximum value, as was the case for n = 2), we get that the sensitivity of
Whittle index policy to discretization is about 1-3% or so. This suggests that
we do not require a finer discretization.
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4 Proof of main result

4.1 Roadmap of the proof

The RMAB {αi}i∈[n] can be considered as an MDPM = ⟨S,A(m),p, r⟩ where
for any st, st+1 ∈ S and at ∈ A(m), we have

p(dst+1 | st,at) =
∏

i∈[n]

pi(dsit+1 | sit, ait), (15)

r(st,at) =
∑

i∈[n]

ri(sit, a
i
t). (16)

The approximate RMAB {α̂i}i∈[n] can also be considered as an MDP M̂ =

⟨Ŝ,A(m), p̂, r̂⟩ where for any ŝt, ŝt+1 ∈ Ŝ and at ∈ A(m), we have

p̂(dŝt+1 | ŝt,at) =
∏

i∈[n]

p̂i(dŝit+1 | ŝit, ait), (17)

r̂(ŝt,at) =
∑

i∈[n]

r̂i(ŝit, a
i
t). (18)

The main intuition of our proof is that if α̂i is an (εi, δi)-approximation
of arm αi for each i ∈ [n], then M̂ is an (ε, δ)-approximation of M in some
appropriate sense to be described later, where (ε, δ) can be characterized in
terms of {(εi, δi)}i∈n. Then, we can use approximation results from MDPs
to derive approximation bounds for RMABs. In the rest of this section, we
formalize this intuition.

4.2 Preliminary results

Definition 7. Consider the two MDPs M = ⟨S,A(m),p, r⟩ and M̂ =

⟨Ŝ,A(m), p̂, r̂⟩ which are defined on the same action space. We are also given

a measurable aggregation function ϕ : S → Ŝ. Given a function space F and
positive constants ε and δ, the MDP M̂ is called an (ε, δ)-approximation of
the MDP M if for all s ∈ S and a ∈ A(m):

∣∣r(s,a)− r̂(ϕ(s),a)
∣∣ ≤ ε, dF

(
p̃(·|s,a), p̂(· | ϕ(s),a)

)
≤ δ,

where p̃ accumulates the probabilities of the true model in the aggregated
state space in the following sense: for any Borel subset B̂ of Ŝ

p̃(B̂ | s,a) :=
∫

s′∈S

1{ϕ(s′) ∈ B̂}p(ds′|s,a).

An immediate implication of the definition of the accumulated measure p̃
is the following.
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Lemma 2. Let f̂ : Ŝ → R and f = f̂ ◦ ϕ and p̃,p be as described previously.
Then we have for all s ∈ S and a ∈ A(m):

∫

ŝ′∈Ŝ

f̂(ŝ′)p̃(dŝ′ | s,a) =
∫

s′∈S

f(s′)p(ds′ | s,a).

Now we formalize the approximation bound between M and M̂.

Lemma 3. When F = FTV or F = FW, then the MDP M̂ is an (ε, δ)-
approximation of the MDP M, where

(ε, δ) =

(∑

i∈[n]

εi,
∑

i∈[n]

δi
)
. (19)

See Appendix B for proof.
From standard results of Markov decision theory (Puterman, 2014), we

know that for a given policy π, the performance V π defined by (1) satisfies the
following fixed point equation:

V π(s) = Qπ(s, π(s)), (20a)

Qπ(s,a) = E[r(s,a)] + γ

∫

S

V π(s′)p(ds′ | s,a). (20b)

Similarly, for any policy π̂ let V̂ π̂ denote the performance of policy π̂ in the
approximate model M̂. Then, V̂ π̂ satisfies the following fixed point equation:

V̂ π̂(ŝ) = Q̂π̂(ŝ, π̂(ŝ)), (21a)

Q̂π̂(ŝ,a) = E[r̂(ŝ,a)] + γ

∫

Ŝ

V̂ π̂(ŝ′)p̂(dŝ′ | ŝ,a). (21b)

Then, we have the following.

Proposition 3. For the approximate setup described in Sec. 2.3 and for any
policy π̂

∥V π̂◦ϕ − V̂ π̂ ◦ ϕ∥∞ ≤ ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞ ≤ βπ̂
F . (22)

Furthermore, for any policies π∗ and π̂∗ which are optimal for M and M̂,
we have

∥V π∗
− V̂ π̂∗

◦ϕ∥∞ ≤ ∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞ ≤ βπ̂∗

F . (23)

Therefore, by the triangle inequality
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∥Qπ∗
−Qπ̂∗◦ϕ∥∞ ≤ 2βπ̂∗

F and ∥V π∗
− V π̂∗◦ϕ∥∞ ≤ 2βπ̂∗

F . (24)

Proof For the proof of the first part of (22), observe that from (20) and (21) we have
that for any s ∈ S,

|V π̂◦ϕ(s)− V̂ π̂(ϕ(s))| =
∣∣∣Qπ̂◦ϕ(s, π̂(ϕ(s)))− Q̂π̂(ϕ(s), π̂(ϕ(s)))

∣∣∣
(a)
≤ ∥Qπ̂◦ϕ(s, ·)− Q̂π̂(ϕ(s), ·)∥∞
(b)
≤ ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞,

where (a) and (b) follow from the definition of the sup norm. Supremizing the LHS
over s ∈ S, we get

∥V π̂◦ϕ − V̂ π̂ ◦ ϕ∥∞ ≤ ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞. (25)

This proves the first part of (22). Now, we bound ∥Qπ̂◦ϕ − Q̂π̂ ◦ϕ∥∞ as follows: for
any fixed s ∈ S, a ∈ A(m), from (20) and (21), we have

|Qπ̂◦ϕ(s,a)− Q̂π̂(ϕ(s),a)|
(c)
≤ |E[r(s,a)]− E[r̂(ϕ(s),a)]|+ γ

∫
S
|V π̂◦ϕ(s′)− V̂ π̂(ϕ(s′))|p(ds′ | s,a)

+ γ

∣∣∣∣∫
S
V̂ π̂(ϕ(s′))p(ds′ | s,a)−

∫
Ŝ
V̂ π̂(ŝ′)p̂(dŝ′ | ϕ(s),a)

∣∣∣∣
(d)
≤ ε+ γ∥Qπ̂◦ϕ − Q̂π̂∥∞ + γ

∣∣∣∣∫
Ŝ
V̂ π̂(ŝ′)p̃(dŝ′ | s,a)−

∫
Ŝ
V̂ π̂(ŝ′)p̂(dŝ′ | ϕ(s),a)

∣∣∣∣
(e)
≤ ε+ γ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞ + γρF(V̂

π̂)δ, (26)

where (c) follows from the definition of Qπ̂◦ϕ and Q̂π̂, adding and subtracting the
V̂ π̂ term and the triangle inequality; (d) and (e) follow from (25), Lemma 2 with
f̂ = V̂ π̂ and the definition of an (ε, δ)-approximation for an MDP. Supremizing the
LHS of (26) over all s,a ∈ S× A(m) and re-arranging terms, we get

∥Qπ̂◦ϕ − Q̂π̂◦ϕ∥∞ ≤
ε+ γρF(V̂

π̂)δ

(1− γ)
= βπ̂

F . (27)

This proves the second part of (22).
Similarly, for the proof of the first part of (23), observe that from (20) and (21)

we have that for any s ∈ S,

|V π∗
(s)− V̂ π̂∗

(ϕ(s))| =
∣∣∣∣ max
a∈A(m)

Qπ∗
(s,a)− max

a∈A(m)
Q̂π̂∗

(ϕ(s),a)

∣∣∣∣
(e)
≤ max

a∈A(m)

∣∣Qπ∗
(s,a)− Q̂π̂∗

(ϕ(s),a)
∣∣

≤ ∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞,

where (e) follows from the inequality max f(x) − max g(x) ≤ max |f(x) − g(x)|.
Supremizing the LHS over s ∈ S, we get

∥V π∗
− V̂ π̂∗

◦ϕ∥∞ ≤ ∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞. (28)
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This proves the first part of (22). Now, we bound ∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞ as follows: for
any fixed s ∈ S, a ∈ A(m), from (20) and (21), we have

|Qπ∗
(s,a)− Q̂π̂∗

(ϕ(s),a)|
(f)
≤ |E[r(s,a)]− E[r̂(ϕ(s),a)]|

+ γ

∫
S
|V π∗

(s′)− V̂ π̂∗
(ϕ(s′))|p(ds′ | s,a)

+γ

∣∣∣∣∫
S
V̂ π̂∗

(ϕ(s′))p(ds′ | s,a)−
∫
Ŝ
V̂ π̂∗

(ŝ′)p̂(dŝ′ | ϕ(s),a)
∣∣∣∣

(g)
≤ ε+ γ∥Qπ∗

− Q̂π̂∗
∥∞

−γ

∣∣∣∣∫
Ŝ
V̂ π̂∗

(ŝ′)p̃(dŝ′ | s,a)−
∫
Ŝ
V̂ π̂∗

(ŝ′)p̂(dŝ′ | ϕ(s),a)
∣∣∣∣

(h)
≤ ε+ γ∥Qπ∗

− Q̂π̂∗
◦ϕ∥∞ + γρF(V̂

π̂∗
)δ, (29)

where (f) is the same as (c); (g), (h) follow from (28), lemma 2 with f̂ = V̂ π̂∗
and

the definition of an (ε, δ)-approximation for an MDP. Supremizing the LHS of (29)
over all s,a ∈ S× A(m) and re-arranging terms, we get

∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞ ≤
ε+ γρF(V̂

π̂∗
)δ

(1− γ)
= βπ̂∗

F . (30)

This proves the second part of (22).
Finally, to show the first part of (24), consider

∥Qπ∗
−Qπ̂∗◦ϕ∥∞

(h)
≤ ∥Qπ∗

− Q̂π̂∗
◦ϕ∥∞ + ∥Qπ̂∗◦ϕ − Q̂π̂∗

◦ϕ∥∞
(i)
≤ βπ̂∗

F + βπ̂∗

F = 2βπ̂∗

F ,

where (h) follows from the triangle inequality; (i) follows from (27) with π̂ = π̂∗ and
(30). To show the second part of (24), consider

∥V π∗
− V π̂∗◦ϕ∥∞

(j)
≤ ∥V π∗

− V̂ π̂∗
◦ϕ∥∞ + ∥V π̂∗◦ϕ − V̂ π̂∗

◦ϕ∥∞
(k)
≤ ∥Qπ∗

− Q̂π̂∗
◦ϕ∥∞ + ∥Qπ̂∗◦ϕ − Q̂π̂∗

◦ϕ∥∞
(l)
≤ βπ̂∗

F + βπ̂∗

F = 2βπ̂∗

F ,

where (j) follows from the triangle inequality; (k) follows from (25) with π̂ = π̂∗ and
(28); (l) follows from (27) with π̂ = π̂∗ and (30). □

4.3 Proof of Theorem 1

For the first part of the theorem, from the triangle inequality, we have

∥Qπ∗
−Qµ̂◦ϕ∥∞ ≤ ∥Qπ∗

−Qπ̂∗◦ϕ∥∞ + ∥Qπ̂∗◦ϕ − Q̂π̂∗
◦ϕ∥∞

+ ∥Q̂π̂∗
− Q̂µ̂∥∞ + ∥Q̂µ̂◦ϕ−Qµ̂◦ϕ∥∞

(a)

≤ 2βπ̂∗

F + βπ̂∗

F + ∥Q̂π̂∗
− Q̂µ̂∥∞,+βµ̂

F , (31)
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where each term of (a) is bound using Prop. 3. Rearranging terms proves (6).
For the second part of the theorem, from triangle inequality we have

∥V π∗
− V µ̂◦ϕ∥∞ ≤ ∥V π∗

− V π̂∗◦ϕ∥∞ + ∥V π̂∗◦ϕ − V̂ π̂∗
◦ϕ∥∞

+ ∥V̂ π̂∗
− V̂ µ̂∥∞ + ∥V̂ µ̂ − V µ̂◦ϕ∥∞

(a)

≤ 2βπ̂∗

F + βπ̂∗

F + ∥V̂ π̂∗
− V̂ µ̂∥∞ + βµ̂

F , (32)

where each term of (b) is bound using Prop. 3. Rearranging the terms
proves (7).

4.4 Proof of Proposition 1

First, observe that for F = FTV,

ρF(V̂
π̂∗
) =

1

2
span(V̂ π̂∗

)
(a)

≤ 1

2

span(r̂)

(1− γ)

(b)

≤ 1

2

∑
i∈[n] span(r̂

i)

(1− γ)
.

where (a) follows from (Subramanian et al, 2022, Lemma 39) and (b) follows
because span is a semi-norm (Puterman, 2014). Using the above bound in (6)
and (7) and using Lemma 3 to bound (ε, δ), we get (8) and (9).

4.5 Proof of Proposition 2

Recall that the state space Si of each arm is a metric space with metric di and
{0, 1}i is a metric space with metric d̂i. Define a metric d on S as follows: for

any q ∈ [1,∞] and s, s′ ∈ S, d(s, s′) =
(∑

i∈[n] d
i(si, s′

i
)q
)1/q

. Define d̂ in an
analogous manner.

We now define Lipschitz continuity for MDP M.

Definition 8. Given MDP M = ⟨S,A(m),p, r⟩, if

Lr := sup
s,s′∈S
a∈A(m)

|r(s,a)− r(s′,a)|
d(s, s′)

< ∞,

Lp := sup
s,s′∈S
a∈A(m)

dFW(p(· | s,a),p(· | s′,a))
d(s, s′)

< ∞,

then the MDP M is said to be (Lr,Lp)-Lipschitz.

Similarly, when this is true for the approximate MDP M̂ = ⟨Ŝ,A(m), p̂, r̂⟩,
then it is said to be (Lr̂,Lp̂)-Lipschitz.
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Lemma 4. If arms α̂i are (Lr̂i ,Lp̂i)-Lipschitz, for all i ∈ [n], and k ∈ [1,∞],

such that 1/k + 1/q = 1, then the MDP M̂ = ⟨Ŝ,A(m), p̂, r̂⟩ is (L
(k)
r̂ ,L

(k)
p̂ )-

Lipschitz, where

L
(k)
r̂ ≤

(∑

i∈[n]

(Lr̂i)
k

)1/k

, L
(k)
p̂ ≤

(∑

i∈[n]

(Lp̂i)k
)1/k

. (33)

Proof See Appendix C. □

Now, observe that for F = FW,

ρF(V̂
π̂∗
) = Lip(V̂ π̂∗

)
(a)

≤
L
(k)
r̂

(1− γL
(k)
p̂ )

. (34)

where (a) follows from (Hinderer, 2005, Theorem 4.2). To prove Proposition 2,
we will take k = ∞ because doing so gives the tighest possible bound in (34).
Substititing (34) in (6) and (7) and using Lemma 3 to bound (ε, δ), we get (10)
and (11).

5 Conclusions

In conclusion, we considered a restless multi-armed bandit problem with uncer-
tain arm models and analyzed the sensitivity of heuristic policies such as the
Whittle index policy. Our results use ideas from sensitivity analysis of MDPs,
but bound the performance loss in terms of the model mismatch of each arm
and the choice of metric used to compare transition matrices. Thus, our results
show how to incorporate model uncertainty in existing heuristic solutions for
restless bandits.

A Preliminary Results

We first prove some preliminary results.

Lemma 5. Consider any f : S → R. Pick an arm i ∈ [n] and arbitrarily fix
s−i ∈ S−i. Define f i : Si → R by f i(si) = f(si, s−i), for any si ∈ Si. Then
(a) span(f i) ≤ span(f).
(b) Lip(f i) ≤ Lip(f).

Proof (a) Consider for any s−i ∈ S−i

span(f i) = sup
si
(1)

,si
(2)

∈Si

∣∣∣∣f i(si(1))− f i(si(2))

∣∣∣∣
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(a)
= sup

si
(1)

,si
(2)

∈Si

∣∣∣∣f(si(1), s−i)− f(si(2), s
−i)

∣∣∣∣
(b)
≤ sup

s(1),s(2)∈S

∣∣∣∣f(s(1))− f(s(2))

∣∣∣∣
= span(f),

where (a) follows from the definition of f i given s−i and (b) follows from the
fact that taking supremum over all S−i will given an upper bound to any specific
s−i.

(b) Again for any s−i ∈ S−i

Lip(f i) = sup
si,s̃i∈Si

|f i(si)− f i(s̃i)|
di(si, s̃i)

(c)
= sup

si,s̃i∈Si

|f(si, s−i)− f(s̃i, s−i)|
d((si, s−i), (s̃i, s−i))

(d)
≤ sup

s,s̃∈S

|f(s)− f(s̃)|
d(s, s̃)

= Lip(f),

where (c) follows from the definition of metric d and function f i given s−i and
(d) follows from the fact that taking supremum over all S−i will given an upper
bound to any specific s−i.

□

For the ease of notation, when F = FTV = {f : S → R : 1
2 span(f) ≤ 1},

define Fi = {f i : Si → R : 1
2 span(f

i) ≤ 1}. Similarly when F = FW = {f : S →
R : Lip(f) ≤ 1}, define Fi = {f i : Si → R : Lip(f i) ≤ 1}. Lemma 5 implies
that if f ∈ F, for any s−i ∈ S−i, f i (as defined in Lemma 5) belongs to Fi.

Lemma 6. Let µi, νi be probability densities on Si. Define µ = µ1 ⊗ · · · ⊗ µn

and ν = ν1 ⊗ · · · ⊗ νn. Then for F = FTV or F = FW,

dF(µ,ν) ≤
∑

i∈[n]

dFi(µi, νi).

Proof We prove the result by induction on n. The result is trivially true for n = 1.
This forms the basis of induction. Now assume that the result is true for n = k − 1
and consider the case for n = k.

For any f ∈ F, S−k and s−k being the state space and the state by excluding
the kth component, we have∣∣∣∣∫

S
fdµ−

∫
S
fdν

∣∣∣∣
=

∣∣∣∣∫
Sk

∫
S−k

f(sk, s−k)
[
µk(sk)µ−k(s−k)− νk(sk)ν−k(s−k)

]
dskds−k

∣∣∣∣
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(a)
≤

∣∣∣∣∫
Sk

∫
S−k

f(sk, s−k)
[
µk(sk)µ−k(s−k)− µk(sk)ν−k(s−k)

]
dskds−k

∣∣∣∣
+

∣∣∣∣∫
Sk

∫
S−k

f(sk, s−k)
[
µk(sk)ν−k(s−k)− νk(sk)ν−k(s−k)

]
dskds−k

∣∣∣∣
(b)
≤

∫
Sk

∣∣∣∣∫
S−k

f(sk, s−k)
[
µ−k(s−k)− ν−k(s−k)

]
ds−k

∣∣∣∣µk(sk)dsk

+

∫
S−k

∣∣∣∣∫
Sk

f(sk, s−k)
[
µk(sk)− νk(sk)

]
dsk

∣∣∣∣ν−k(s−k)ds−k (35)

where (a) follows from adding and subtracting the same term and using the triangle
inequality and (b) also follows from the triangle inequality. Now observe that for a
fixed sk, by Lemma 5, f(sk, ·) ∈ F−k. Therefore,∣∣∣∣∫

S−k
f(sk, s−k)

[
µ−k(s−k)− ν−k(s−k)

]
ds−k

∣∣∣∣ ≤ dF−k (µ
−k, ν−k) (36)

and similarly, ∣∣∣∣∫
Sk

f(sk, s−k)
[
µk(sk)− νk(sk)

]
dsk

∣∣∣∣ ≤ dFk (µ
k, νk) (37)

Substituting (36) and (37) in (35), we get∣∣∣∣∫
S
fdµ−

∫
S
fdν

∣∣∣∣ ≤ ∫
Sk

dF−k (µ
−k, ν−k)µk(sk)dsk +

∫
S−k

dFk (µ
k, νk)µ−k(s−k)ds−k

= dFk (µ
k, νk) + dF−k (µ

−k, ν−k)
(c)
≤

∑
i∈[k]

dFi(µ
i, νi),

where (c) follows from the induction hypothesis which is true for k − 1. The final
result follows from induction. □

Lemma 7. Consider p̃ as defined in Definition 7 and p̃i as defined in Def-
inition 4 for arm αi with state aggregation function ϕi. Then for all s ∈ S,
a ∈ A(m), any Borel subsets B̂i ⊂ Ŝi and B̂ =

∏
i∈[n] B̂

i, we have

p̃(B̂ | s,a) =
∏

i∈[n]

p̃i(B̂i | si, ai). (38)

Proof Consider the term on the RHS, it can be re-written as follows∏
i∈[n]

p̃i(B̂i | si, ai) =
∏
i∈[n]

∫
s̄i∈Si

1{ϕi(s̄i) ∈ B̂i}pi(ds̄i | si, ai)

=

∫
s̄i∈Si

∏
i∈[n]

1{ϕi(s̄i) ∈ B̂i}pi(ds̄i | si, ai)

(a)
=

∫
s̄∈S

1{ϕ(s̄) ∈ B̂}p(ds̄ | s,a)

= p̃(B̂ | s,a).

where (a) follows from the fact that the states for each arm evolve independently.
□
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B Proof of Lemma 3

For the first part, consider

|r(s,a)− r̂(ϕ(s),a)| =

∣∣∣∣∣∣
∑

i∈[n]

ri(si, ai)−
∑

i∈[n]

r̂i(ϕi(si), ai)

∣∣∣∣∣∣
(a)

≤
∑

i∈[n]

∣∣ri(si, ai)− r̂i(ϕi(si), ai)
∣∣ (b)

≤
∑

i∈[n]

εi.

where (a) follows from the triangle inequality and (b) follows from the
assumption on the arms. This proves the first part of the Lemma.

The second part follows from the definition of p (Eq. (15)), p̂ (Eq. (17)),
p̃ (Eq. (38)) and Lemma 6 applied with Lemma 1, Lemma 2.

C Proof of Lemma 4

For the first part, consider for any ŝ(1), ŝ(2) ∈ Ŝ,a ∈ A

∣∣r̂(ŝ(1),a)− r̂(ŝ(2),a)
∣∣ =

∣∣∣∣∣∣
∑

i∈[n]

r̂i(ŝi(1), a
i)−

∑

i∈[n]

r̂i(ŝi(2), a
i)

∣∣∣∣∣∣
(a)

≤
∑

i∈[n]

∣∣∣r̂i(ŝi(1), ai)− r̂i(ŝi(2), a
i)
∣∣∣

(b)

≤
∑

i∈[n]

Lr̂id
i(ŝi(1), ŝ

i
(2))

(c)

≤
(∑

i∈[n]

(Lr̂i)
k

)1/k

d(ŝ(1), ŝ(2)).

where (a) follows from the triangle inequality, (b) follows from the assumption
on the arms and (c) follows from Hölder’s inequality and the definition of
metric d.

For the second part, consider for any ŝ(1), ŝ(2) ∈ Ŝ,a ∈ A

dF(p̂(·|ŝ(1),a), p̂(·|ŝ(2),a))
(d)

≤
∑

i∈[n]

dFi(p̂i(·|ŝi(1), a
i), p̂i(·|ŝi(2), a

i))

(e)

≤
∑

i∈[n]

Lp̂idi(ŝi(1), ŝ
i
(2))
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(f)

≤
(∑

i∈[n]

(Lp̂i)k
)1/k

d(ŝ(1), ŝ(2)).

where (d) follows from Lemma 6, (e) follows from the assumption on the arms
and (f) follows from Hölder’s inequality and the definition of metric d.

D Hyperparameters used in the example in
Sec. 3.2.2

The parameters used in our experiment are described in Table 3.

Table 3: Hyperparameters used in computing Lip(V̂ µ̂) approximately

Parameter Value

Input size H = 100
Number of linear layers 3
Hidden layer size 50
Activation function ReLU
Number of episodes (Ne) 105

Samples per episode (Se) 50
ADAM Learning rate 0.001
Number of gradient steps 105

Samples for computing Lip(V̂ µ̂)(NL)) 105
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