
1190 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 11, NO. 3, SEPTEMBER 2024

On Learning Whittle Index Policy for Restless
Bandits With Scalable Regret
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Abstract—Reinforcement learning is an attractive ap-
proach to learn good resource allocation and scheduling
policies based on data when the system model is un-
known. However, the cumulative regret of most reinforce-
ment learning (RL) algorithms scales as Õ

(
S
√
AT

)
, where

S is the size of the state space, A is the size of the action
space, T is the horizon, and the Õ(·) notation hides loga-
rithmic terms. Due to the linear dependence on the size of
the state space, these regret bounds are prohibitively large
for resource allocation and scheduling problems. In this ar-
ticle, we present a model-based RL algorithm for such prob-
lems which has scalable regret. In particular, we consider a
restless bandit model, and propose a Thompson-sampling-
based learning algorithm which is tuned to the underlying
structure of the model. We present two characterizations
of the regret of the proposed algorithm with respect to the
Whittle index policy. First, we show that for a restless bandit
with n arms and at most m activations at each time, the re-
gret scales either as Õ

(
mn

√
T
)

or Õ
(
n2

√
T
)

depending

on the reward model. Second, under an additional technical
assumption, we show that the regret scales as Õ

(
n1.5

√
T
)

or Õ
(
max{m√

n, n}√T
)

. We present numerical exam-
ples to illustrate the salient features of the algorithm.

Index Terms—Reinforcement learning (RL), restless ban-
dits (RBs), Thompson sampling, Whittle index.

I. INTRODUCTION

R ESOURCE allocation and scheduling problems arise in
control of networked systems. Examples include oppor-

tunistic scheduling in networks [1], [2], [3]; link scheduling in
machine-type communication [4]; user allocation in mmWave
networks [5]; channel allocation in networks [6]; source se-
lection in peer-to-peer networks [7]; opportunistic spectrum
access [8], [9], [10]; demand response in smart grids [11], [12];
dynamic routing in multi-UAVs [13]; operator allocation in
multirobot systems [14], etc.
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Due to the curse of dimensionality, finding an optimal so-
lution in such resource allocation and scheduling problems is
computationally prohibitive [15]. Restless bandits (RBs) [16]
have emerged as a popular solution heuristic for such problems.
The RB framework is motivated by the rested multiarmed bandit
problem considered in the seminar work of Gittins [17], who
showed that the optimal strategy for the rested multiarmed bandit
problem is of the index type: one can compute an index for each
state of each alternative (also called an arm), and choose the
alternative with the highest index. In general, such index-type
policies are not optimal for RBs. In fact, computing the optimal
policy for RBs is PSPACE hard [15]. However, as argued in [16],
an index-type policy (now known as the Whittle index) can be a
useful heuristic if a technical condition known as indexability is
satisfied. The Whittle index policy is optimal for some specific
models [6], [17], [18]. There is also strong empirical evidence to
suggest that the Whittle index policy performs close to optimal
in various settings [19], [20], [21], [22], [23], [24]. For these rea-
sons, the RB framework has been applied in a variety of resource
allocation and scheduling applications referenced above.

In all the above references, it is assumed that the system model
is known perfectly. In many real-world applications, there is
often uncertainty about the system model. In such situations,
reinforcement learning (RL) is an attractive alternative. In recent
years, there have been many papers which investigated RL
for RBs [25], [26], [27], [28], [29]. Most of these learn the
Q-function associated with the average reward/cost optimality
equation parameterized by the activation cost λ and use it to
asymptotically learn the Whittle index.

A common measure of performance of an RL algorithm is
regret, which measures the difference in performance of the
learning algorithm that does not a priori know the system model
with the performance of a baseline policy that knows the model.
However, the regret is not characterized in existing literature on
RL for RBs [25], [26], [27], [28], [29].

There are some results on characterizing regret for some
specific instances of RBs: the special case of rested bandits [30],
a model of multiclass queues arising in mobile edge comput-
ing [31], and a model for scheduling when to observe uncon-
trolled Markov chains arising in opportunistic spectrum access
in cognitive radios [32], [33], [34], [35], [36], [37]. The main
contribution of this article is to characterize the regret of a
general RL algorithm for general RBs.

It is not possible to directly use existing RL algorithms that
achieve near optimal regret in RBs. To explain why this is the
case, we provide a short overview of characterizing regret in
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TABLE I
COMPARISON OF THE REGRET BOUNDS OF VARIOUS ALGORITHMS

RL. Consider a general Markov decision process (MDP) with
finite state space of size S and finite action space of size A.
It is shown in [38] that no learning algorithm can achieve a
regret of less than Ω̃(

√
SADT ), where D is the diameter of

the underlying MDP and T is the time horizon for which the
system runs. Several classes of algorithms have been proposed in
literature which achieve this lower bound up to a factor of

√
S and

logarithmic terms. Broadly speaking, these regret optimal RL
algorithms fall into two classes: 1) optimism under uncertainty
(OUU) and 2) Thompson sampling (TS). Two types of regret
bounds are provided: 1) frequentist regret, which is a bound
on the worst-case regret with high probability and 2) Bayesian
regret, which is a bound on the average regret (with respect to a
prespecified prior). A summary of the regret bounds for various
algorithms is shown in Table I.

Each of these state-of-the-art algorithms has a regret that
scales approximately as Õ(S√AT ), which is prohibitively large
when translated to the RB setting for reasons explained below.
Consider an RB with n arms where at most m arms can be
activated at a time. Let Si denote the size of the state space
of arm i ∈ {1, . . . , n}. Such an RB can be modeled as an MDP,
where the size of the state space is

∏n
i=1 S

i and the size of the ac-
tion space is

(
n
m

)
. Thus, the regret of using any of the algorithms

described in Table I on RBs will be Õ
(∏n

i=1 S
i
√(

n
m

)
T
)
,which

grows exponentially with the number n of arms. In this article,
we provide a more nuanced characterization of the scaling of
the regret with the number of alternatives.

In particular, we propose a Thompson-sampling-based learn-
ing algorithm for RB, which we call as RB-TSDE. This algo-
rithm is inspired from the Thompson sampling with dynamic
episodes (TSDE) algorithm [43]. We show that for an RB with
n arms, where m of them can be chosen at a time, RB-TSDE
has a Bayesian regret (with respect to the Whittle index policy
with known dynamics) of Õ(n2

√
T ) or Õ(nm√T ) depending

on the assumptions on the per-step reward. Under an additional
technical assumption, we obtain an alternative regret bound of
Õ(n1.5

√
T ) or Õ(max{m√n, n}√T ).

The rest of this article is organized as follows. In Section II,
we formulate the learning problem for RB when the state
transition probabilities of all arms are unknown and present
the main results. In Section III, we present the TSDEs for RB

and provide an upper bound on the regret. In Section IV, we
provide the proof outline and defer the details to the Appendix. In
Section V, we demonstrate a numerical example of the regret of
our algorithm. In Section VI, we discuss relaxation and sufficient
conditions of some of the assumptions, in addition to comparison
with the optimal policy. Finally, Section VII concludes this
article.

Notation: We use uppercase variables S, A, etc., to denote
random variables, the corresponding lower variables (s, a, etc.)
to denote their realizations, and corresponding calligraphic let-
ters (S, A, etc.) to denote set of realizations. Subscripts denote
time and superscripts denote arm. Thus, Si

t is the state of arm i
at time t. Bold letters denote the collection of variables across all
arms. Thus, St = (S1

t , . . . , S
n
t ) is the set of states of all arms at

time t.S0:t is a shorthand for (S0, . . . , St). We useE[·] to denote
the expectation of a random variable, P(·) to denote probability
of an event, and 1{. . .} to denote the indicator of an event. Let
[n] := {1, . . . , n}.

For a given function f : X → R, the span norm of f is defined
as span(f) = maxx∈X f(x)−minx∈X f(x). Given two metric
spaces (X, dX) and (Y, dY ), the Lipschitz constant of function
f : X → Y is defined by

Lf = sup
x1,x2∈X
x1 �=x2

dY (f(x1), f(x2))

dX(x1, x2)
.

Let ζ1 and ζ2 denote probability measures on (X, dX). Then, the
Kantorovich distance between them is defined as

K(ζ1, ζ2) = sup
f :Lf≤1

∣∣∣∣∣∑
x∈X

f(x)ζ1(x)−
∑
x∈X

f(x)ζ2(x)

∣∣∣∣∣.
Given a metric space (X, dX), diam(X) = sup{dX(x1, x2) :
x1, x2 ∈ X} denotes the diameter of the set X.

II. MODEL, PROBLEM FORMULATION, AND RESULTS

A. Restless Bandits

RBs are a class of resource allocation problems where,
at each time instant, a decision maker has to select m out
of n available alternatives. Each alternative, which is also
called an arm, is a controlled Markov process 〈Si,Ai =
{0, 1}, P i, ri〉, where Si is the state space, Ai = {0, 1} is the
action space, P i : Si ×Ai → Δ(Si) is the controlled transi-
tion matrix, and ri : Si ×Ai → [0, Rmax] is the per-step re-
ward. The action Ai

t = 1 means the decision maker selects
arm i at time t. The arms for which Ai

t = 1 are called ac-
tive arms and the arms for which Ai

t = 0 are called passive
arms.

Let S = S1 × · · · × Sn denote the joint state space and
A(m) =

{
a ∈ {0, 1}n : ‖a‖1 = m

}
denote the feasible ac-

tion space, where ‖a‖1 :=
∑

i∈[n] |ai| =
∑

i∈[n] a
i. We as-

sume that the initial state S0 = (S1
0 , . . . , S

n
0 ) is a random

variable which is independent across arms and has a known
initial distribution. Moreover, the arms evolve independently,
i.e., for any s0:t = (s10:t, . . . , s

n
0:t) and a0:t = (a10:t, . . . , a

n
0:t),
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we have

P (St+1 = st+1|S0:t = s0:t,A0:t = a0:t)

=

n∏
i=1

P i
(
sit+1|sit, ait

)
:= P (st+1|st,at).

We consider two reward models as follows.
1) Model A: All arms, whether active or not, yield re-

wards, i.e., the aggregated per-step reward is given by
r(st,at) =

∑
i∈[n] r

i(sit, a
i
t).

2) Model B: Only the activated arms yield rewards. The state
of the passive arms evolves, but the arms do not yield
reward. Thus, the aggregated per-step reward is given by
r(st,at) =

∑
i∈[n] r

i(sit, a
i
t)1({ait = 1}).

Note that Model B is the same as Model A under the assump-
tion that ri( · , 0) = 0 for all arms i ∈ [n]. For that reason, for
most of the article, we will take r(st,at) =

∑
i∈[n] r

i(sit, a
i
t)

and assume ri( · , 0) = 0 when specializing for results of
Model B.

Remark 1: Both Models A and B arise in different appli-
cations. Examples of Model A include queuing networks [2],
where all queues incur a holding cost, and machine mainte-
nance [21], where all machines incur a cost when run in a faulty
state. Examples of Model B include cognitive radios [8], where
the reward depends only on the state of the selected channels.

Let Π denote the family of all possible (potentially history
dependent and randomized) policies for the decision maker (who
observes the state of all arms). The performance of any policy
π ∈ Π is given by

J(π) := lim inf
T→∞

1

T
E

[
T∑

t=1

r(St,At)

]
(1)

where the expectation is taken with respect to the initial state
distribution and the joint distribution induced on all system
variables.

The objective of the decision maker is to choose a policy
π ∈ Π to maximize the total expected reward J(π). This objec-
tive is an MDP but computing an optimal policy using a dynamic
program suffers from the curse of dimensionality. For example,
if |Si| = S for each i ∈ [n], then |S| = Sn and |A(m)| = (

n
m

)
.

Then, the computational complexity of each step of value iter-
ation is |A(m)||S|2 =

(
n
m

)
S2n, which is prohibitively large for

even moderate values of S and n. For this reason, most of the RB
literature focuses on a computationally tractable but suboptimal
approach known as the Whittle index policy.

B. Whittle Index Policy

The Whittle index policy is motivated by the solution of a
relaxation of the original optimization problem. Instead of the
hard constraint of activating exactly m arms at a time, consider
a relaxation where m arms have to be activated on average, i.e.,

max
π∈Π

lim inf
T→∞

1

T
E

[
T∑

t=1

r(St,At)

]
,

s.t. lim sup
T→∞

1

T
E

[
T∑

t=1

‖At‖1
]
= m. (2)

Note that this relaxation is simply used to obtain a decomposition
to define Whittle indices. The Whittle index policy, which is
stated at the end of this section, picks exactly m arms at each
time step.

Following [44], the Lagrangian relaxation of (2) is given by:

L(λ,π) = lim inf
T→∞

1

T
E

[
T∑

t=1

[
r(St,At)− λ‖At‖1

]]
. (3)

Moreover, a policy π∗ ∈ Π is optimal if there exists a Lagrange
multiplier λ ≥ 0 such that π∗ ∈ argmaxπ∈Π L(λ,π) and the
expected number of activations under π∗ is exactly m. See [44,
Th. 4.3].

Note that the optimization problem maxπ∈Π L(λ,π) is
decoupled across arms because the per-step reward is
decoupled

r(St,At)− λ‖At‖1 =
∑
i∈[n]

[
ri(Si

t , A
i
t)− λAi

t

]
.

Therefore, for a given λ, maxπ∈Π L(λ,π) is equivalent to the
following n decoupled optimization problems: For all i ∈ [n]

max
πi:Si→{0,1}

lim inf
T→∞

1

T
E

[
T∑

t=1

[
ri(Si

t , A
i
t)− λAi

t

]]
. (4)

Let πi
λ denote the optimal policy for Problem (4). Define the

passive setWi
λ as the set of states for which the optimal policyπi

λ

prescribes passive action, i.e.,Wi
λ :=

{
s ∈ Si : πi

λ(s) = 0
}

.
Definition 1 (Indexability and Whittle index): An RB is said

to be indexable ifWi
λ is nondecreasing in λ, i.e., for any λ1, λ2 ∈

R such that λ1 ≤ λ2, we haveWi
λ1
⊆ Wi

λ2
. For an indexable RB,

the Whittle index wi(s) of state s ∈ Si is the smallest value of
λ for which state s is part of the passive setWi

λ, i.e.,

wi(s) = inf
{
λ ∈ R : s ∈ Wi

λ

}
.

Note that if the penalty λ = wi(s), then the policy πi
λ is

indifferent between taking passive or active actions at state s.
The Whittle index policy is a feasible policy for the original

optimization problem and is given as follows: At each time,
activate the arms with the m largest values of the Whittle index
at their current state.

As argued in [16], the Whittle index policy is meaningful
only when all arms are indexable. Various sufficient conditions
for indexability are available in [21], [22], and [24]. In some
settings, the Whittle index policy is optimal [6], [17], [18]. For
general models, there is also strong evidence to suggest that the
Whittle index policy performs close to optimal [21], [22], [24],
[45], [46]. Algorithms to efficiently compute Whittle indices are
presented in [24] and [47].

C. Learning Problem

Let μ denote the Whittle index policy and J(μ) denote its
performance. We are interested in a setting where the transition
matrices {P i}i∈[n] of the arms are unknown but the decision
maker has a prior on them. In this setting, the performance
of a policy π operating for horizon T is characterized by the
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Bayesian regret given by

R(T ;π) = Eπ

[
TJ(μ)−

T∑
t=1

r(St,At)

]
(5)

where the expectation is taken with respect to the prior dis-
tribution on {P i}i∈[n], the initial condition, and the potential
randomization done by the policy π. The Bayesian regret is
a well-known metric used in various settings [43], [48], [49],
[50]. An alternative method to quantify the performance is the
frequentist regret but we focus on the Bayesian regret for a
comparison of the two notions of the regret; see [51] and [52].

Remark 2: We measure the regret with respect to the Whittle
index policy. In contrast, in most of the existing research, regret
is defined with reference to the optimal policy. In principle,
the results presented in this article are also applicable to the
regret defined with respect to the optimal policy provided it is
possible to compute the optimal policy for a given model. See
Section VI-C for details.

Remark 3: The rested multiarmed bandit problem is a
special case of Model B, where passive arms are frozen, i.e.,
P i(s+|s, 0) = 1{s+ = s} for all arms i ∈ [n]. For this model,
the Whittle index policy reduces to what is called the Gittins
index policy and is optimal [17]. Thus, the results obtained in
this article are also applicable to the rested multiarmed bandits.

D. Main Results

Our main result is to propose a Thompson-sampling-based
algorithm, which we call RB-TSDE, and characterize its regret.
In particular, let Si = |Si| denote the size of the state space of
arm i and S̄n =

∑
i∈[n] S

i denote the sum of the sizes of the state
space of all arms. Then, we show the following.

Main Result: The regret of RB-TSDE is bounded by

R(T ; RB− TSDE) ≤ O(αS̄n√T log T
)

where α = n for Model A and α = m for Model B. Under addi-
tional assumptions, the bound for both models can be tightened
to

R(T ; RB− TSDE) ≤ O(max{α
√

S̄n, S̄n}
√
T log T

)
.

The detailed characterization of the constants in the O(·)
terms is given in Theorems 1 and 2 later.

III. LEARNING ALGORITHM FOR RB

A. Assumptions on the Unknown Parameters

Let θi� denote the unknown parameters of the transition ma-
trices [P i(·|·, 0)P i(·|·, 1)], i ∈ [n]. We assume that θi� belongs
to a compact set Θi. We impose the following assumptions on
the model.

Assumption 1: For any i ∈ [n] and θi ∈ Θi, the RB
〈Si,Ai = {0, 1}, P i(θi), ri〉 is indexable.

Assumption 2: Let μθ denote the Whittle index policy cor-
responding to model θ. Let P θ denote the controlled transition
matrix under policy μθ and Jθ denote the average reward of
policy μθ. We assume that for every θ ∈ Θ, Jθ does not depend
on the initial state and also assume that there exists a bounded

differential value function V θ such that (Jθ,V θ) satisfy the
average reward Bellman equation

Jθ + V θ(s) = r(s,μθ(s)) +
[
P θV θ

]
(s), ∀s ∈ S. (6)

Assumption 1 is necessary for the Whittle index heuristic to
be meaningful. Assumption 2 ensures that the average reward
of the Whittle index policy is well defined for all models. There
are various sufficient conditions for Assumption 2 in literature.
See [53] for an overview.

The average reward Bellman equation (6) has an infinite
number of solutions. In particular, if (Jθ,V θ) satisfies (6),
then so does (Jθ,V θ + constant). Assumption 2 implies that
span(V θ) is bounded. A bound on span(V θ) under a different
set of assumptions is presented in [39] but this bound does not
suffice for our analysis. See Remark 7 for details. As we want
to capture the scaling of span(V θ) with n and m, so we impose
an additional assumption on the model.

The ergodicity coefficient of P θ is defined as

λP θ
= 1− min

s,s′∈S

∑
z∈S

min{P θ(z|s),P θ(z|s′)}.

We impose the following assumption on the model.
Assumption 3: We assume there exists λ∗ < 1 such that

supθ∈Θ λP θ
≤ λ∗.

See [53, Sec. 5] for various equivalent characterizations of
λP θ

< 1. Assumption 3 is used while analyzing the rate of
convergence of relative value iteration [54] to bound the span
of the value function. A sufficient condition of Assumption 3 is
presented in [55, Th. 8.11] and a relaxation of the assumption is
presented in Section VI-A.

The ergodicity coefficient ofP θ depends on the Whittle index
policy μθ. A policy independent upper bound of the ergodicity
coefficient is given by the contraction factor, which is defined as

λ′ = 1− min
s,s′∈S,

a∈A(m),a′∈A(m)

∑
z∈S

min{P (z|s,a),P (z|s′,a′)}.

Since the dynamics of the arms are independent, the definition
of contraction factor implies that a sufficient condition for
Assumption 3 is that for every arm, and every pair of state-action
pairs, there exists a next state that can be reached from both
state-action pairs with positive probability in one step. Moreover,
if for every arm there is a distinguished state which can be
reached from all state-action pairs with probability at least ε,
then the ergodicity coefficient is less than 1− ε.

B. Priors and Posterior Updates

We assume that {θi�}i∈[n] are independent random variables
and use φi

1 to denote the prior on θi for each arm i ∈ [n]. At
time t, let hi

t = (si1, a
i
1, . . . , s

i
t−1, a

i
t−1, s

i
t) denote the history

of states and actions at arm i. Let φi
t denote the posterior

distribution on θi� given hi
t. Then, upon applying action ait and

observing the next state sit+1, the posterior distribution φi
t+1 can

be computed using the Bayes rule as

φi
t+1(dθ) =

P i(sit+1|sit, ait; θ)φi
t(dθ)∫

P i(sit+1|sit, ait; θ̃)φi
t(dθ̃)

. (7)
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Algorithm 1: RB-TSDE.

1: Input: {(Θi, φi
1)}i∈[n].

2: Initialize t← 1, t1 ← 0, T0 ← 0, k ← 0,
N i(si, ai) = 0, ∀ai ∈ {0, 1}, si ∈ Si, ∀i ∈ [n], θ0, μθ0 .

3: for t = 1, 2, . . . do
4: if tk + Tk−1 < t or 2N i

tk
(s, a) < N i

t (s, a) for any
s ∈ Si, a ∈ {0, 1}, i ∈ [n] then

5: Set k ← k + 1, Tk−1 ← t− tk−1, tk ← t.
6: Actor i ∈ [n] samples θik ∼ φi

tk
and compute wi

tk
.

7: end if
8: Actor i ∈ [n] sends the Whittle index wi

tk
(sit) to the

coordinator.
9: The coordinator sends ait = 1 to the arms with the

m-highest Whittle index and sends ait = 0 to others.
10: Actor i ∈ [n] updates φi

t+1 according to (7).
11: end for

If the prior is a conjugate distribution on Θi, then the posterior
can be updated in closed form. Note that the exact form of the
prior and the posterior update rule are not important for the
description of the algorithm or its regret analysis.

C. RB-TSDE Algorithm (Distributed Implementation)

We propose a Thompson-sampling-based algorithm, which
we call RB-TSDE. Our algorithm is inspired by the TSDE
algorithm in [43].

The RB-TSDE algorithm consists of a coordinator and n
actors, one for each arm. The coordinators and the actors require
synchronized communication as described below. The whole
algorithm is described in Algorithm 1.

As the name suggests, RB-TSDE operates in episodes of
dynamic length. The episodes are synchronized for all actors
and the coordinator signals the start of episodes to all actors.
The actor at arm i maintains a posterior φi

t distribution on
the dynamics of arm i according to (7) and keep track of
N i

t (s
i, ai) =

∑t−1
τ=1 1{(Si

τ , A
i
τ ) = (si, ai)}.

Let tk and Tk denote the start time and length of episode k,
respectively. The end of the episode can either be triggered by
the coordinator or any of the actors. The coordinator triggers the
end of the episode if the length of the episode is one more than
the length of the previous episode. The actor for arm i triggers the
end of the episode if the number of state-action visits N i

t (s
i
t, a

i
t)

of the current state-action pair are more than double of their
value at the beginning of the episode. Thus

tk+1 = min
{
t > tk : t− tk > Tk−1 or

N i
t (s

i, ai) > 2Ntk(s
i, ai) for some (i, si, ai)

}
.

At the beginning of episode k, the actor for arm i ∈ [n] samples
a parameter θik from the posterior φi

tk
and computes the Whittle

index wi
tk

for all states. During episode k, at each time t, the
actor at arm i sends the value of wi

tk
(sit) to the coordinator.

The coordinator receives wi
tk
(sit) from all arms, sends the active

action ait = 1 to the arms with the m-highest values of the Whit-
tle index, and sends the passive action ait = 0 to the remaining

arms. This process continues until a condition for ending the
episode is triggered by the coordinator or one of the actors.

D. Regret Bound

Theorem 1: Under Assumptions 1–3, the regret ofRB-TSDE
is upper bounded as follows:

R(T ; RB− TSDE) < 40α
Rmax

1− λ∗
S̄n

√
T log T

where α = n for Model A and α = m for Model B.
See Section IV-D for proof.
We derive a tighter regret bound under a stronger assumption.

We first assume that the state space of each arm Si, i ∈ [n], is
a finite subset of R and use di to denote the Euclidean met-
ric on R, i.e., di(s, s′) = |s− s′|. Furthermore, let d(s, s′) =∑

i∈[n] d
i(si, s′,i) for any s, s′ ∈ S. for any s, s′ ∈ S. We then

impose the following assumption.
Assumption 4: For each θ ∈ Θ, the value function V θ is

Lipschitz with a Lipschitz constant upper bounded by Lv .
In general, Assumption 4 depends on the specific model being

considered. We present one instance where Assumption 4 is
satisfied in Section VI-B.

Theorem 2: Under Assumptions 1–4, the regret ofRB-TSDE
for both Model A and Model B is upper bounded as follows:

R(T ; RB− TSDE)

< 16max
{
αRmax

√
S̄n,DmaxLvS̄n

}
√
KT log(T max{1,K ′})

where α = n for Model A and α = m for Model B, K, and
K ′ are positive constants independent of n and T , and Dmax =
maxi∈[n] diam(Si).

See Section IV-D for proof.
Remark 4: If we directly use an existing RL algorithm for

RBs, the regret will scale as Õ(2n√T ) or larger. The results of
Theorems 1 and 2 show that the regret scales as either Õ(n2

√
T ),

Õ(n1.5
√
T ), or Õ(n√T ) depending on the modeling assump-

tions. Thus, using a learning algorithm which is adapted to the
structure of the models gives a significantly better scaling with
the number of arms.

Remark 5: The exact scaling with the number of arms
depends on how m scales with n. For example, if m remains
constant, then under Assumptions 1–3, the regret for Model A
scales as Õ(n2

√
T ), while the regret for Model B scales as

Õ(n√T ). Assumptions 1–3, if Lv is upper bounded by a con-
stant, under Assumption 4, the regret for Model A scales as
Õ(n1.5

√
T ), while the regret for Model B scales as Õ(n√T ).

On the other hand, ifm scales as βn, where β < 1 is a constant,1

then under Assumptions 1–3, the regret for both models scales
as Õ(n2

√
T ). Under Assumption 4, the regret for both models

scales as Õ(n1.5
√
T ). Thus, for Model A, the regret bound of

Theorem 2 is tighter than that of Theorem 1, but for Model B,
it depends on the scaling assumptions on m.

1For this setting, it was shown in [18] that the Whittle index policy is optimal
as n→∞.
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IV. REGRET ANALYSIS

The high-level idea of the proof is similar to the analysis
in [43], but we exploit the properties of the RB model while
simplifying individual terms. We first start with bounds on the
average reward and the differential value function.

A. Bounds on Average Reward and Differential Value
Function

As mentioned earlier, V θ is unique only up to an additive
constant. We assume that V θ is chosen such that ξθV θ = 0,
where ξθ is the stationary distribution of P θ. This ensures
that V θ is equal to the asymptotic bias of policy μθ and is
given by

V θ =
∞∑
t=0

P t
θ

[
r − Jθ

]
. (8)

See for example [56].
Then we have the following bounds.
Lemma 1: Under Assumption 3, for any θ ∈ Θ,

0 ≤ Jθ ≤ αRmax and span(V θ) ≤ 2αRmax/(1− λ∗)

where α = n for Model A and α = m for Model B.
Proof: Note that for Model A, r(s,a) ∈ [0, nRmax] while

for Model B, r(s,a) ∈ [0,mRmax]. Then, the bounds for Jθ
follow immediately from definition. The bounds on span(V θ)
follow from (8), span(s+ y) ≤ span(s) + span(y), Assump-
tion 3, and the fact that for any vector v, span(P θv) ≤ λP θ

span(v). �
Remark 6: Lemma 1 shows the key difference between

Models A and B. When all arms yield rewards, the maximum
value of r(s,a) is nRmax while when only active arms yield
rewards, the maximum value of r(s,a) is mRmax. This leads
to different bounds on Jθ and V θ.

Remark 7: An alternative bound on span(V θ) is presented
in [39]. Let T s1→s2

θ denote the expected number of steps to go
from state s1 to state s2 under policy μθ for model θ. Define
Dθ = maxs1,s2

T s1→s2

θ to be the one-way diameter. Then, it
is shown in [39] that span(V θ) ≤ JθDθ. We do not know of an
easy way to characterize the dependence of Dθ on the number
n of arms. That is why we consider an alternative bound on
span(V θ).

B. Regret Decomposition

For the ease of notation, we simply use R(T ) instead
of R(T ; RB− TSDE). We also use (J�, μ�,P �,V �) instead
of (Jθ� , μθ� ,P θ� ,V θ�) and use (Jk, μk,P k,V k) instead of
(Jθk , μθk ,P θk ,V θk). Rearranging terms in Bellman (6) and
adding and subtracting V k(st+1), we get

r(st,at) = Jk + V k(st)− V k(st+1) + V k(st+1)

− [
P kV k

]
(st). (9)

Let KT denote the number of episodes until horizon T .
Substituting (9) in (5), we get

R(T ) = E

[
TJ� −

KT∑
k=1

TkJk

]
︸ ︷︷ ︸

regret due to sampling error=:R0(T )

+ E

[KT∑
k=1

tk+1−1∑
t=tk

V k(St+1)− V k(St)

]
︸ ︷︷ ︸

regret due to time-varying policy=:R1(T )

+E

[KT∑
k=1

tk+1−1∑
t=tk

[
P kV k

]
(St)−V k(St+1)

]
︸ ︷︷ ︸

regret due to model mismatch=:R2(T )

. (10)

C. Bounding Individual Terms

Each term of (10) is bounded as follows.
Lemma 2: Under Assumptions 1–3, we have

1) R0(T ) ≤ 2αRmax

√
S̄nT log T ;

2) R1(T ) ≤ 4
αRmax

1− λ∗
√

S̄nT log T ;

3) R2(T ) ≤ 12
√
2
αRmax

1− λ∗
(
n+ S̄n

√
T log T

)
.

See the Appendix for the proof steps.
We can obtain an alternative bound onR2(T ) under Assump-

tion 4.
Lemma 3: Under Assumptions 1, 2, and 4, we have
1) R0(T ) ≤ 2αRmax

√
S̄nT log T .

2) R1(T ) ≤ 2DmaxLv

√
S̄nT log T .

3) R2(T ) ≤ 12S̄nDmaxLv

√
KT log(K ′T )

where K and K ′ are positive constants that do not depend on
n and T .

The bound on R0(T ) is similar as Lemma 3. The bound on
R1(T ) is established based on Appendix A and the fact that Lip-
schitz continuity of V θ implies that span(V θ) ≤ Lvdiam(S).
The bound on R2(T ) is obtained by following the steps in
Appendix D.

D. Obtaining the Final Bound

Proof of Theorem 1: From (10) and Lemma 2, we get

R(T ) ≤ 2αRmax

√
S̄nT log T + 4

αRmax

1− λ∗
√

S̄nT log T

+ 12
√
2
αRmax

1− λ∗
(
n+ S̄n

√
T log T

)
.

By definition, λ∗ < 1. Then

R(T ) < 6
αRmax

1− λ∗

√
S̄nT log T + 24

√
2
αRmax

1− λ∗
S̄n

√
T log T

<
(
6 + 24

√
2
) αRmax

1− λ∗
S̄n

√
T log T

= 40
αRmax

1− λ∗
S̄n

√
T log T .

This completes the proof of Theorem 1. �
Authorized licensed use limited to: McGill Libraries. Downloaded on September 22,2024 at 15:48:21 UTC from IEEE Xplore.  Restrictions apply. 



1196 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 11, NO. 3, SEPTEMBER 2024

Proof of Theorem 2: From (10), Lemma 2, and 3, we get

R(T ) ≤ 2αRmax

√
S̄nT log T + 2DmaxLv

√
S̄nT log T

+ 12S̄nDmaxLv

√
KT log(K ′T )

< 2αRmax

√
S̄nT log T

+ 14S̄nDmaxLv

√
KT log(K ′T ).

Let R̄n = max
{
αRmax/

√
S̄n,DmaxLv

}
. Then, we have

R(T ) < 16S̄nR̄n

√
KT log(K ′T ).

This completes the proof of Theorem 2. �

V. NUMERICAL EXAMPLES

In this section, we demonstrate the empirical performance
of RB-TSDE. In particular, we consider two environments, one
for Model A (a model for machine maintenance) and one for
Model B (a model for link scheduling). For both environments,
we consider multiple experiments and plot the regret as a
function of time and as a function of number of arms. Our
results illustrate that the regret does indeed scale according to
our theoretical results. We also compare the results with the
empirical performance of QWI, which is a Q-learning algorithm
for RBs proposed in [26], [28], and [29]. Note that only the
algorithm proposed in [29] is called QWI, but the algorithms
in [26] and [28] are conceptually similar, so we collectively call
them QWI.

A. Environments

We start with a description of the two environments.
1) Environment A: We consider a machine maintenance

model where a single repairman is responsible for the main-
tenance of a set of machines, which deteriorate over time. Each
machine has multiple deterioration states sorted from pristine to
ruined. There is a cost associated with running the machine and
the cost is nondecreasing function of the state. If the machine is
left unmonitored, then the state of the machine stochastically
deteriorates over time. The repairman may visit one of the
machines and replace it with a new machine at a fixed cost.
The objective is to determine a scheduling policy to minimize
the expected discounted cost over time.

We model the above environment as an instance of Model A.
In particular, we consider n arms, where n ∈ {10, 20, . . . , 80}
where m = 1 arm can be activated at each time. The state
space of each arm is of size S = 10. Under a = 1, the state
of the arm is reset to 1 (and this fact is known to the learner).
Under a = 0, the transition matrix is stochastic monotone and
chosen, as described in [24, Appendix 1.2]. The transitions under
the passive action are unknown to the learner. The per-step
reward function are given by ri(s, 0) = (S− 1)2 − (s− 1)2,
ri(s, 1) = 0.5(S− 1)2 for all i ∈ [n] and s ∈ [S].

2) Environment B: We consider a link scheduling problem
where there are n users who can communicate over a shared
communication link. Each user has a queue, where packets arrive

according to an unknown i.i.d. process. At each time, a controller
may schedule one of the users and transmit all its packets over
the channel. The users which are not scheduled incur a holding
cost which is equal to the square of the number of packets in the
queue.

We model the above environment as an instance of Model B.
In particular, we consider n arms, where n ∈ {10, 20, . . . , 80}
wherem = n− 1 arm can be activated at each time. The state of
each arm is of size S = 10. Under a = 1, the transition matrix
is upper triangular and chosen, as described in [57, P1(p) of
Appendix A], where p is set to be different for each arm, linearly
ranged from 0.05 to 0.95. The transitions under the active action
are unknown to the learner. Under a = 0, the state of the arm
is reset to 1 (and this fact is known to the learner). The per-
step reward function are given by ri(s, 0) = 0, ri(s, 1) = (S−
1)2 − (s− 1)2 for all i ∈ [n] and s ∈ [S].

B. Algorithms

We compare the performance of two algorithms.
1) RB-TSDE: We consider the RB-TSDE algorithm de-

scribed in Algorithm 1. We initialize the algorithm with un-
informed Dirichlet prior on the unknown parameters and update
the posterior according to the conjugate posterior for Dirichlet
priors.

2) QWI: We also consider QWI, which is a Q-learning algo-
rithm for RBs proposed in [26], [28], and [29] as a baseline.
The algorithm has two learning rates. As recommended in [28,
eq. (17)] we pick the step-size sequence which has a good
performance by setting parametersC andC ′ ofQWI asC = 0.03
and C ′ = 0.01, where the numerical values were obtained by
running a hyperparameter search.

C. Experimental Results

In our experiments, we pick a horizon of T = 5000 and
compute the Bayesian regret averaged over 250 sample paths.
We repeat the experiment for n ∈ {10, 20, . . . , 80}. For each
environment, we plot four curves: (a) plot of R(T )/√T vs
T for RB-TSDE; (b) plot of R(T ) at T = 5000 versus n for
RB-TSDE; (c) plot of R(T )/√T vs T for QWI; and (d) plot
of R(T ) at T = 5000 versus n for QWI. For plots (b) and
(d), we also fit the points with a parametric curve of the form
p0 + p1n+ p2n

1.5 for Environment A and p0 + p1n for Envi-
ronment B to obtain the scaling with number of arms.

The plots for Environment A is shown in Fig. 1. The sub-
plot (a) shows that the regret essentially scales as

√
T with time.

The subplots (b) show that the regret scales as n1.5 with the
number of arms. Thus, the results are consistent with regret
bounds of Theorem 2.

The plots for Environment B is shown in Fig. 2. The behavior
of subplots (a) and (c) is the same as for Environment A. Note
that for larger values of T , the plot of R(T )/√T has not yet
converged to a straight line, but it is clear that these curves are
upper bounded by a constant. The subplot (b) shows that the
regret scales linearly with the number of arms. Note that in this
case sincem = n− 1, Theorem 1 suggests that the regret should
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Fig. 1. Regret analysis of RB-TSDE and QWI method for Environment B. Note that RB-TSDE has an order of magnitude lower regret than QWI.
(a) RB-TSDE: R(T )/

√
T versus T . (b) RB-TSDE: R(T ) versus n. (c) QWI: R(T )/

√
T versus T . (d) QWI: R(T ) versus n.

Fig. 2. Regret analysis of RB-TSDE and QWI for Environment A. Note that RB-TSDE has an order of magnitude better regret than QWI.
(a) RB-TSDE: R(T )/

√
T versus T . (b) RB-TSDE: R(T ) versus n. (c) QWI: R(T )/

√
T versus T . (d) QWI: R(T ) versus n.

scale as n1.5 (see Remark 5) and the result is consistent with the
theorem.

Note that even though no regret analysis of the QWI algorithm
for RBs is presented in [26], [28], and [29], the above experiment
suggests that empirically the performance of QWI has similar
features asRB-TSDE. However, unlike theQWI,RB-TSDEdoes
not require any hyperparameter tuning. Moreover, RB-TSDE
has an order of magnitude lower regret than QWI.

VI. DISCUSSION

A. Relaxation of Assumption 3

Assumption 3 can be relaxed as follows.
Assumption 5: For every θ, there exists a positive integer τ ∗

and a real λ∗ ∈ (0, 1) such that λP τ∗
θ
≤ λ∗.

Based on this assumption, the result of Lemmas 1 changes as
follows.

Lemma 4: Under Assumption 5, for any θ ∈ Θ, span(V θ) ≤
2τ ∗αRmax/(1− λ∗).

Consequently, we have the following changes.
Lemma 5: Under Assumptions 1, 2, and 5, we have

1) R1(T ) ≤ 4
τ ∗αRmax

1− λ∗
√

S̄nT log T ;

2) R2(T ) ≤ 12
√
2
τ ∗αRmax

1− λ∗
(
n+ S̄n

√
T log T

)
.

Theorem 3: Under Assumptions 1, 2, and 5, the regret of
RB-TSDE is upper bounded as follows:

R(T ; RB− TSDE) < 40α
τ ∗Rmax

1− λ∗
S̄n

√
T log T .

The proof steps of Lemmas 4 and 5 are similar to the proof
steps of Lemmas 1 and 2; and the proof steps of Theorem 3 are
similar to the proof steps of Theorems 1. See [58] for the details.

B. Set of Sufficient Conditions for Assumption 4

Assumption 6: Suppose each arm i ∈ [n] is (Li
r, L

i
p) Lips-

chitz, i.e.,

Li
r = sup

si
(1)

,si
(2)

,a

|ri
(
si(1), a

)
− ri

(
si(2), a

)
|

di
(
si(1), s

i
(2)

)

Li
p = sup

si
(1)

,si
(2)

,a

K
(
P i

(
·|si(1), a

)
, P i

(
·|si(2), a

))
di

(
si(1), s

i
(2)

)
where Li

r <∞ and Li
p < 1.

Assumption 7: For all θ ∈ Θ, the Whittle index policy is
optimal.

Assumption 7 is satisfied in some instances, such as: i) the
rested multiarmed bandit setup described in Remark 3, where
only one arm can be activated at a time (i.e., m = 1) and yield
reward, and arms that are not activated remain frozen (i.e.,
P (si+|si, 0) = δsi(s

i
+), where δsi is the Dirac delta measure

centered at si) [17]; ii) the number of arms are asymptotically
large [18]; iii) certain queuing models [6].

Moreover, we assume that the product measure on S is
d(s, s′) =

∑
i∈[n] d

i(si, s′,i).
Lemma 6 ([59, Lemma 2]): Under Assumption 6,

the MDP 〈S,A(m),P ,R〉 is (maxi∈[n] Li
r,maxi∈[n] Li

p)-
Lipschitz, i.e.,

max
s,s′∈S
a∈A(m)

|r(s,a)− r(s′,a)|
d(s, s′)

≤ max
i∈[n]

Li
r

max
s,s′∈S
a∈A(m)

K(P (·|s,a)− P (·|s′,a))
d(s, s′)

≤ max
i∈[n]

Li
p.
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An immediate consequence of Lemma 6 is the following.
Lemma 7: Under Assumptions 6 and 7, V θ is Lipschitz with

the Lipschitz constant bounded by

Lv ≤ (max
i∈[n]

Li
r)/(1−max

i∈[n]
Li
p).

Thus, Assumptions 6 and 7 imply Assumption 4.
Proof: The result follows from Lemma 6 and [60, Th. 4.2].

�

C. Regret With Respect to the Optimal Policy

We measure regret with respect to the Whittle index policy.
For models where Assumption 7 is satisfied, the Whittle index
policy is an optimal policy. Even when the assumption is not
satisfied, it is possible to generalize the results of this article
to identify the regret with respect to the optimal policy. In
particular, let ψ∗θ denote the optimal policy for model θ ∈ Θ.
Then, the Bayesian regret of a learning algorithm π with respect
to the optimal policy is

R∗(T ;π) = Eπ

[
TJ(ψ∗θ)−

T∑
t=1

r(St,At)

]
. (11)

Then, in principle, we can replace the distributed implementa-
tion presented in Algorithm 1 with a modified centralized imple-
mentation where the learner observes the state of all arms and
maintains the posteriorφi

t for all i ∈ [n]. At the beginning of each
episode, the learner samples θitk from φi

tk
, computes the policy

μtk , which is optimal for the sampled model (θ1tk , . . . , θ
n
tk
), and

plays μtk for the rest of the episode. The regret of this variant
will be the same as the bounds in Theorems 1 and 2. However,
we do not present such an analysis here because it makes the
resulting algorithm impractical as computing the optimal policy
is intractable when there are more than a few arms.

VII. CONCLUSION

In this article, we present a Thompson-sampling-based RL
algorithm for RBs. We show that the Bayesian regret of our
algorithm with respect to an oracle that applies the Whittle
index policy of the true model is either Õ(nm√T ), Õ(n2

√
T ),

Õ(n1.5
√
T ) or Õ(n√T ) depending on assumptions on the

model. These are in contrast to naively using any standard RL
algorithm, which will have a regret that scales exponentially
in n. Our results are also applicable to the rested multiarmed
bandit setting, where the Whittle index policy is the same as the
Gittins index and is optimal. All in all, our results illustrate that
a learning algorithm which leverages the structure of the model
can significantly improve regret compared to model-agnostic
algorithms.

APPENDIX A

A. Bound on R0(T ) (Lemma 2.1)

We first state a basic property of the Thompson sampling
algorithms.

Lemma 8 (TS Lemma [50]): Suppose the true parameters θ
and the estimated ones θk have the same distribution given the

same historyH. For anyH-measurable function f , we have

E[f(θ)|H] = E[f(θk)|H].
Proof of Lemma 2.1: Now we consider R0(T ). Let J̃� =

αRmax − J� and J̃k = αRmax − Jk. By Lemma 1, we have
that J̃�, J̃k ∈ [0, Rmax]. Therefore,

R0(T ) = E

[
TJ� −

KT∑
k=1

TkJk

]
= E

[
KT∑
k=1

TkJ̃k − T J̃�

]

(a)

≤
∞∑

k=1

E

[
1({tk ≤ T})(Tk−1 + 1)J̃�

]
− T

[
J̃�

]

≤ E

[
KT∑
k=1

(Tk−1 + 1)J̃�

]
− TE

[
J̃�

] (b)

≤ αRmaxE[KT ]

where (a) uses the TS Lemma and the fact that due to the first
stopping criterion, Tk ≤ Tk−1 + 1; (b) uses Lemma 1 and the
fact that

∑KT

k=1 Tk−1 ≤ T . The results follows from Lemma 9.
�

Lemma 9: The number of episodesKT is bounded as follows:

KT ≤ 2
√

S̄nT log(T ).

Proof: Define macro episodes with start times tnl
, l =

1, 2, . . . with tn1
= t1 and

tnl+1
= min{tk > tnl

: N i
tk
(si, ai) > 2N i

tk−1(s
i, ai)

for some (i, si, ai)}. (12)

Let γ be the number of macro episodes until time T and define
n(γ+1) = KT + 1. The rest of the proof is the same as [43, eq.
(8) in proof of Lemma 1] by which we get KT ≤

√
2γT .

For each arm-state-action tuple, define

γi(si, ai) = |{k ≤ KT |N i
tk
(si, ai) > 2N i

tk−1(s
i, ai)}|.

As a result, γi(si, ai) ≤ logN i
T+1(s

i, ai). Note that for any i ∈
[n],N i

T+1(s
i, ai) ≤ T and we have 2Si state-action pairs. Then,

we have

γ ≤ 1+
∑
i∈[n]

∑
(si,ai)

γi(si, ai)≤1+
∑
i∈[n]

∑
(si,ai)

logN i
T+1(s

i, ai)

= 1 +
∑
i∈[n]

2Si log T ≤ 2S̄n log T.

�

B. Bound on R1(T ) (Lemma 2.2)

R1(T ) is a telescoping sum, which can be simplified as
follows:

R1(T ) = E

[ KT∑
k=1

tk+1−1∑
t=tk

[V k(St+1)− V k(St)]

]

=E

[KT∑
k=1

[
V k(Stk+1

)−V k(Stk)
] ]≤2

αRmax

1− λ∗
E[KT ]
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where the last inequality uses Lemma 1. The result then follows
by substituting the value of KT from Lemma 9.

C. Bound on R2(T ) (Lemma 2.3)

1) Notation: For any arm i ∈ [n], let N i
t (s

i, ai, si+) denote
the number of times (Sτ , Aτ , Sτ+1) is equal to (si, ai, si+) un-
til time t. Let P̂ i

t (s
i
+|si, ai) = N i

t (s
i, ai, si+)/

(
1 ∨N i

t (s
i, ai)

)
denote the empirical distribution based on observations up to
time t. For a given δ ∈ (0, 1), we define

εiδ() =

√
2Si log(1/δ)

1 ∨ 
. (13)

2) Some Preliminary Results: In this section, we state
some preliminary properties.

Lemma 10: Let p, q ∈ Δ(S). Then, for any function f : S →
R, we have

∣∣〈f, p〉− 〈
f, q

〉∣∣ ≤ 0.5 span(f)
∥∥p− q

∥∥
1
.

Proof: Let f̄ = (max f +min f)/2. Then∣∣〈f, p〉− 〈
f, q

〉∣∣ = ∣∣〈f − f̄ , p− q
〉∣∣ ≤ ‖f − f̄‖∞

∣∣〈1, p− q
〉∣∣

≤ 1
2 span(f)

∥∥p− q
∥∥
1
.

�
Lemma 11: Consider any arm i, episode k, δ ∈ (0, 1),

 > 1, and state-action pair (si, ai). Define events Ei� =
{N i

tk
(si, ai) = }, Fi = {‖P i(· |si, ai)− P̂ i

tk
(· |si, ai)‖1 ≤

εδ(N
i
tk
(si, ai))}, andFi

k = {‖P i
k(· |si, ai)− P̂ i

tk
(· |si, ai)‖1 ≤

εδ(N
i
tk
(si, ai))}. Then, we have

P
(∥∥P i − P̂ i

tk
(· |si, ai)∥∥

1
> εiδ()

∣∣∣ Ei�) ≤ δ.

The above inequality implies that

E
[∥∥P i − P̂ i

tk
(· |si, ai)∥∥

1

]
≤ E[εiδ(N

i
tk
(si, ai))|Fi] + 2δ.

A similar bound holds if (P i,Fi) is replaced by (P i
k,Fi

k).
Proof: Given arm i, state si of the arm and action ai chosen

for the arm, we know from [61] that for any ε > 0, the L1-
deviation of the true and the empirical distributions over Si with
N i

tk
(si, ai) =  samples is bounded by

P
(
‖P i(· |si, ai)− P̂ i

tk
(· |si, ai)‖1 ≥ ε

∣∣∣ Ei�)
≤ 2S

i

exp

(
−ε2

2

)
< exp

(
Si − ε2

2

)
.

Let δ = exp(Si − ε2/2). Note that, Si ≥ 2, therefore Si +
log(1/δ) ≤ Si log(1/δ). Hence,

P

(∥∥P i(· |si, ai)− P̂ i
tk
(· |si, ai)∥∥

1
>

√
2Si log(1/δ)

1 ∨ 

∣∣∣∣∣ Ei�
)
.

< δ.

The next result is driven by showing that P ((Fi)c) ≤ δ and

E
[∥∥P i(· |si, ai)− P̂ i

tk
(· |si, ai)∥∥

1

]
≤ 2δ + E[εiδ(N

i
tk
(si, ai))|Fi].

See [58] for details. �

Lemma 12: For any episode k, and δ ∈ (0, 1), we have

E
[∥∥P �(·|s,a)− P k(·|s,a)

∥∥
1

]
≤ 4nδ +

∑
i∈[n]

∑
f∈{Fi,Fi

k}
E
[
εiδ(N

i
tk
(si, ai))|f].

Proof: The proof is as follows:

E
[∥∥P �(·|s,a)− P k(·|s,a)

∥∥
1

]
(a)
=

∑
i∈[n]

E
[∥∥P i(· |si, ai)− P i

k(· |si, ai)
∥∥
1

]
(b)

≤
∑
i∈[n]

E
[∥∥P i(· |si, ai)− P̂ i

tk
(· |si, ai)∥∥

1

+
∥∥P i

k(· |si, ai)− P̂ i
tk
(· |si, ai)∥∥

1

]
where (a) follows from [35, Lemma 13] and (b) follows from
triangle inequality. The result then follows from Lemma 11. �

3) Bounding R2(T ).: Now, consider the inner summation
in the expression forR2(T )

E
[〈
P k(· |St,At),V k

〉− V k(St+1)
]

(a)

≤ E
[
1
2 span(V k)

∥∥P k(·|St,At)− P �(·|St,At)
∥∥
1

]
(b)

≤ αRmax

1− λ∗
E
[∥∥P k(·|St,At)− P �(·|St,At)

∥∥
1

]
(14)

where (a) follows from Lemma 10 and (b) follows from
Lemma 1. Then, by Lemma 12, we have

R2(T ) = E

[KT∑
k=1

tk+1−1∑
t=tk

[
P kV k

]
(St)− V k(St+1)

]

≤ αRmax

1− λ∗

KT∑
k=1

tk+1−1∑
t=tk

(
4nδ

+
∑

(i,f)∈Dk

E
[
εiδ(N

i
tk
(Si

t , A
i
t))|f

])
(15)

where Dk = {(i, f) : i ∈ [n], f ∈ {F,Fi
k}}.

For the first inner term of (15), we have

KT∑
k=1

tk+1−1∑
t=tk

4nδ =

T∑
t=1

4nδ = 4nδT. (16)

For the second inner term of (15), fix (i, f) ∈ Dk and let δ̄ =

2
√

Si log(1/δ). Note
∑KT

k=1

∑tk+1−1
t=tk

=
∑T

t=1. Then,

KT∑
k=1

tk+1−1∑
t=tk

E

[
δ̄/
√
2√

1 ∨N i
tk
(Si

t , A
i
t)

∣∣∣∣∣f
]

= δ̄
∑

(si,ai)

T∑
t=1

E

[
1(Si

t = si, Ai
t = ai)

√
1

1 ∨N i
t (s

i, ai)

∣∣∣∣∣f
]
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= δ̄
∑

(si,ai)

E

[
1(N i

T+1(s
i, ai) > 0) +

Ni
T+1(s

i,ai)−1∑
j=1

1√
j

∣∣∣∣∣f
]

≤ δ̄
∑

(si,ai)

E

[
1(N i

T+1(s
i, ai) > 0) + 2

√
N i

T+1(s
i, ai)

∣∣∣∣∣f
]

≤ δ̄
∑

(si,ai)

3E

[√
N i

T+1(s
i, ai)

∣∣∣∣∣f
]

(a)

≤ 3δ̄E

[√
2Si

∑
(si,ai)

N i
T+1(s

i, ai)

∣∣∣∣∣f
]

(b)
= 6
√
2Si

√
T log(1/δ) (17)

where (a) uses the Cauchy–Schwartz inequality and (b) uses the
fact that

∑
(xi,ai) N

i
T+1(x

i, ai) = T . Adding (17) over (i, f) ∈
Dk, we have

KT∑
k=1

tk+1−1∑
t=tk

∑
(i,f)∈Dk

E
[
εiδ(N

i
tk
(Si

t , A
i
t))|f

]
≤ 12

√
2S̄n

√
T log(1/δ). (18)

Finally, by setting δ = 1/T , and Substituting (18), (17), and (16)
in (15), we get the final result.

D. Bound on R2(T ) (Lemma 3)

1) Some Preliminary Results: For any arm i ∈ [n], let
N i

t (s
i, ai, si+) and P̂ i

t (s
i
+|si, ai) denote the same variables, as

defined in Section C.1.
Lemma 13: For any Lipschitz function f : X → R with

Lipschitz coefficient Lf , and any probability measures ζ1 and
ζ2 on (X, dX) we have∣∣∣∣∣∑

x∈X
f(x)ζ1(x)−

∑
x∈X

f(x)ζ2(x)

∣∣∣∣∣ ≤ LfK(ζ1, ζ2).

Proof: The result is immediately derived from the definition
of the Kantorovich distance. �

Lemma 14 (From Theorem 2 of [62]): Let ν denote a
probability measure on (R, | · |) and let ν̂n denote the esti-
mated probability measure by n samples from ν. Then, for
all n ≥ 1 and all ε > 0, there exist constants C and c which
depend on ν such that P (K(ν, ν̂n) ≥ ε) ≤ C exp(−cnε)1(ε ≤
1) + C exp(−cnε2)1(ε > 1).

Proof: The lemma follows directly by applying
[62, Th. 2] and setting d = 1, p = 1, and α = 2 which satis-
fies [62, condition (C1)]. �

Let εδ() =
√
log(C/δ)/(c(1 ∨ )).

Lemma 15: Consider any arm i, any episode k,
δ ∈ (0, 1),  > 1, and state-action pair (si, ai). Define
events Fi = {K(P i, P̂ i

tk
(· |si, ai)) ≤ εδ(N

i
tk
(si, ai))}, and

Fi
k = {K(P̃ i

k, P̂
i
tk
(· |si, ai))‖1 ≤ εδ(N

i
tk
(si, ai))}. We have

P
(
K(P i, P̂ i

tk
(· |si, ai)) > εiδ()

∣∣∣ Ei�) ≤ δ.

Furthermore, the above inequality implies

E
[
K(P i, P̂ i

tk
(· |si, ai))

]
≤ E[εiδ(N

i
tk
(si, ai))|Fi]

+ 2 diam(Si)δ.
A similar bound holds if (P i,Fi) is replaced by (P i

k,Fi
k).

Proof: The result follows by using Lemmas 13 and 14 and a
similar approach as the proof of Lemma 11. �

Lemma 16: For any episode k, and δ ∈ (0, 1), we have

E
[
K(P �(·|s,a),P k(·|s,a))

]
≤ 4nDmaxδ +

∑
f∈{Fi,Fi

k}

∑
i∈[n]

E
[
εiδ(N

i
tk
(si, ai))

∣∣∣ f].
Proof: The proof is similar to that of Lemma 12, where we use

the Kantorovich distance instead of total variation distance. The
equivalent of equality (a) (in the proof of Lemma 12) follows
from [59, Lemma 4], and the rest of the argument follows from
Lemma 15. �

2) Bounding R2(T ).: First, consider the inner summation
in the expression forR2(T )

E
[〈
P k(· |St,At),V k

〉− V k(St+1)
]

(a)

≤ LvE
[
K (P �(·|St,At)− P k(·|St,At))

]
(19)

where (a) follows from Lemma 13. Then, by Lemma 16, we
have

R2(T ) = E

[KT∑
k=1

tk+1−1∑
t=tk

[
P kV k

]
(St)− V k(St+1)

]

≤Lv

KT∑
k=1

tk+1−1∑
t=tk

(
4nDmaxδ

+
∑

(i,f)∈Dk

E
[
εiδ(N

i
tk
(Si

t , A
i
t))

∣∣∣ f]) (20)

where Dk = {(i, f) : i ∈ [n], f ∈ {F,Fi
k}}.

For the first inner term of (20), we have

KT∑
k=1

tk+1−1∑
t=tk

4nDmaxδ =
T∑

t=1

4nDmaxδ = 2nDmaxδT. (21)

For the second inner term of (20), we can follow an argument
similar to (18) to show that:

KT∑
k=1

tk+1−1∑
t=tk

∑
(i,f)∈Dk

E
[
εiδ(N

i
tk
(Si

t , A
i
t))

∣∣∣ f]

≤ 12

√
S̄n log(C/δ)T

c
. (22)

See [58] for details. Finally, by setting δ = 1/T , and substituting
(22) and (21) in (20), we get the result.
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