
ORIGINAL RESEARCH

Received: 8 March 2023 / Accepted: 18 August 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

	
 Amit Sinha
amit.sinha@mail.mcgill.ca

Aditya Mahajan
aditya.mahajan@mcgill.ca

1	 Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, 
Canada

On the sensitivity of restless bandits solutions to uncertainty 
in the models of the arms

Amit Sinha1  · Aditya Mahajan1

Annals of Operations Research
https://doi.org/10.1007/s10479-025-06821-3

Abstract
Restless multi-armed bandits (RMAB) are a popular framework for modeling resource 
allocation and scheduling problems arising in various applications. Such applications can 
be modeled as Markov decision processes (MDP), but optimal or sub-optimal solution 
through dynamic programming suffer from high complexity. RMAB provides a heuristic 
solution, where the solution complexity scales linearly with the number of alternatives. 
However, these heuristic solutions are derived under the assumption that the model of 
all arms are known perfectly. In this paper, we consider RMAB with uncertainty in the 
rewards and dynamics of the arms. In such a setting, using a robust MDP solution is not 
possible due to high computational complexity. So, we consider a certainty equivalence 
approach and bound the additional loss in performance due to model inaccuracy. Our 
bounds are directly in terms of the model uncertainty of each arm and we illustrate their 
use via examples.

Keywords  Restless multi-armed bandits · Model mismatch · Markov decision process · 
Certainty equivalence · Whittle index · Gittins index

1  Introduction

Markov decision processes (MDPs) are a popular framework for solving multi-stage deci-
sion problems (Puterman, 2014). Traditional MDP models capture aleatoric uncertainty as 
part of the model as a probability distribution over the next state and instantaneous rewards. 
However, such models do not capture epistemic uncertainty. One method to capture epis-
temic uncertainty is via the framework of robust MDPs (White & Eldeib, 1994; Iyengar, 
2005; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013; Tzortzis et al., 2015; Lam, 2016). 
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However, solving robust MDPs is NP hard and the solutions, which provide worst case 
performance guarantees against all models in an uncertain set, are often too pessimistic.

An alternative approach is to simply choose the optimal policy corresponding to a nomi-
nal model from the uncertain set. Such an approach is often called certainty equivalence in 
the systems and control literature or the plug-in estimator in the artificial intelligence lit-
erature. Unlike the robust MDP solution, the certainty equivalent solution does not provide 
worst case performance guarantees. However, the certainty equivalent solution is compu-
tationally simpler and, might provide a satisficing solution (Simon, 1956) in many cases, 
especially when the epistemic uncertainty is not large.

In order to verify if a certainty equivalent solution is satisficing, we need to characterize 
the sensitivity of the solution of an MDP to model uncertainty. There is a rich literature on 
this topic (Whitt, 1978, 1979; Müller, 1997b; Asadi et al., 2018; Gelada et al., 2019; Kara & 
Yüksel, 2020) which characterizes the sensitivity of the optimal solution of MDPs to model 
uncertainty. However, directly using these results in a real world application, which typi-
cally has multiple components, can be challenging for two reasons. First, we typically have 
uncertainty estimates of the dynamics and rewards of each component while the sensitivity 
results for MDPs require uncertainty estimates of the coupled model. Second, it is often not 
possible to compute an optimal solution of a large MDP due to the curse of dimensional-
ity. So, in practice, one often uses a domain specific heuristic solution. So, one needs to 
generalize the sensitivity results to provide sensitivity of heuristic solutions (rather than 
optimal solutions) to model uncertainty. In this paper, we illustrate how to circumvent these 
challenges for restless multi-armed bandits (RMAB) (Whittle, 1988), which is a modeling 
framework used to model and solve resource allocations and scheduling problems arising 
in various applications, including communication networks, power systems, and machine 
maintenance.

In a RMAB, a decision maker controls the evolution of n alternatives or arms. Each arm 
is a controlled Markov process which can be active or passive at each time. The decision 
maker can only activate m arms, where m < n. The objective is to determine which arms 
to activate at each time to maximize the expected discounted cost over an infinite horizon. 
Such a problem can be modeled as an MDP but obtaining an optimal solution is PSAPCE 
hard in the number of arms (Papadimitriou & Tsitsiklis, 1999).

Motivated by the low-complexity index-based solution to the rested MAB problem 
(Gittins & Jones, 1979), various low-complexity heuristic solutions have been proposed 
for restless MAB as well. The most popular heuristic is the Whittle index policy (Whittle, 
1988), which has linear complexity in the number of alternatives. The Whittle index policy 
is optimal in some settings (e.g., when the arms which are not selected remain frozen (Git-
tins & Jones, 1979), when the number of arms is asymptotically large  (Weber & Weiss, 
1990), and when the model satisfies some separation conditions (Lott & Teneketzis, 2000)), 
and performs close to optimal in a variety of applications (Niño-Mora, 2007; Ansell et al., 
2003; Glazebrook et al., 2005, 2006; Ayesta et al., 2010; Akbarzadeh & Mahajan, 2019). In 
addition to the Whittle index policy, other heuristic solutions to RMAB have also been pro-
posed in the literature. These include primal-dual index heuristics (Bertsimas & Niño-Mora, 
2000), linear programming based methods (Verloop, 2016; Zayas-Cabán et al., 2019; Gast 
et al., 2022), general Lagrangian relaxations (Hu & Frazier, 2017; Brown & Smith, 2020; 
Hodge & Glazebrook, 2011; Killian et al., 2021).
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However, the current literature assumes that the model of each arm is known perfectly. 
This is not always true, especially in applications where the models of the arms are esti-
mated based on data. We are interested in the following question: how sensitive are heu-
ristic solutions such as the Whittle index policy to uncertainty in the model of the arms? 
In particular, if there is some uncertainty in the model of the arms (which could be due to 
approximation errors in modeling the rewards and dynamics of each arm), what is the loss in 
performance in taking a certainty equivalence approach and following the heuristic solution 
of the approximate model? This question is also relevant for restless bandits with continuous 
state space, where model approximation may be required to compute the heuristic solution.

For rested multi-armed bandits (i.e., when only one arm can be activated at each time, 
and the arms which are not activated remain frozen), it is known that the Gittins index policy 
is optimal (Gittins & Jones, 1979). The question of sensitivity of the Gittins index to model 
mismatch has been investigated in Katehakis and Veinott (1987). However, the result and 
the proof technique of Katehakis and Veinott (1987) rely on specific features of the rested 
MAB settings and cannot be directly generalized to restless MABs. There are also other 
results in the literature on approximate computation of Gittins index (Ben-Israel & Flåm, 
1990), but they are also not applicable to the restless setting.

There is some work on the robust formulation for rested multi-armed bandits Caro and 
Das Gupta (2015), Kim and Lim (2016), Cohen and Treetanthiploet (2022). These results 
have been generalized to a certain class of partially observed models in Kim (2016). How-
ever, as far as we are aware, there are not results on the robust formulation for restless 
bandits.

Recently, there has been a significant interest in learning Whittle index policies for 
RMAB (Meshram et al., 2017; Borkar & Chadha, 2018; Fu et al., 201; Avrachenkov & 
Borkar, 2022; Robledo et al., 2022; Akbarzadeh & Mahajan, 2022b). Most of these learn 
the Whittle index by using reinforcement learning to learn a Q-function of an auxiliary MDP 
associated with the computation of Whittle index. Alternative approaches to learning in rest-
less bandits are presented in Tekin and Liu (2012), Liu et al. (2012), which learn the arm 
with the largest average reward. However, these papers do not provide an explicit answer to 
the sensitivity question that we are interested in.

Our main contributions are the following. 

1.	 We formulate the question of sensitivity of a heuristic solution known as Whittle index 
policy to model mismatch. In particular, we formalize how to define model mismatch of 
an arm and characterize the sensitivity of the Whittle index policy in terms of approxi-
mation errors in modeling individual arms and a property of the value function of the 
optimal policy.

2.	 Our results depend on the choice of metric on probability spaces. We consider a class 
of metrics knows as integral probability metrics (IPMs) and focus on two IPMs: total 
variation distance and Wasserstein distance. For these IPMs, we provide a computable 
upper bound on the sensitivity of the heuristic solution which depends on the approxi-
mation errors in modeling individual arms and properties of the reward functions and 
transition kernels of the arms.
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The rest of the paper is organized as follows. In Sect.  2, we present the model and the 
problem formulation and state the main results. We present some examples of our results in 
Sect. 3. In Sect. 4, we present the proofs of the main results and conclude in Sect. 5.

1.1  Notation used

We use uppercase letters to denote random variables (e.g. S, A, etc.), lowercase letters to 
denote their realizations (e.g. s, a, etc.) and sans serif letters to denote sets (e.g. S, A, etc.). 
We also use superscripts (e.g. Si, Ai, etc. for arm i) to denote quantities for a specific arm. 
For any set X, ∆(X) is used to denote the space of probability distributions on X. P and E 
denote the probability of an event and expectation of a random variable, respectively. For an 
integer n, we use [n] to denote the set of integers from 1 to n.

Given a set S and a function f : S → R, we use span (f) to denote the span of f, i.e., 
span (f) = sups,s′∈S |f(s) − f(s′)| and we use ∥f∥∞ to denote the supremum norm of 
function f, i.e., ∥f∥∞ = sups∈S f(s).

When (S, d) is a metric space we use Lip (f) to denote the Lipschitz constant of f, i.e.,

	
Lip (f) = sup

s,s′∈S

|f(s) − f(s′)|
d(s, s′)

.� (1)

If this constant exists and is finite, then f is said to be Lip (f)-Lipschitz.

2  Problem formulation and main results

The results of this paper are applicable to models with discrete or continuous state spaces. 
For ease of exposition, we present the model and results for continuous state spaces. They 
can be easily translated to models with discrete state spaces.

2.1  Restless multi-armed bandits

A restless multi-armed bandit (RMAB) is a decision making problem where there 
are n alternatives or arms. Each arm  i, i ∈ [n], is a controlled Markov process 
αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, ri⟩, where Si denotes the state space which is assumed to 
be a compact set, {0, 1} is the action space, pi(a), a ∈ {0, 1}, denotes the transition density 
from Si to Si when action a is chosen, and ri : Si × {0, 1} �→ R denotes the per-step reward 
which is assumed to be uniformly bounded and continuous in Si. For some of the results, 
we will assume that, for each arm i ∈ [n], the state space Si is a metric space and use di to 
denote the metric on Si.

The system operates in discrete time. We use Si
t ∈ Si and Ai

t ∈ {0, 1} to denote the state 
and action of arm i at time t. We use St = (S1

t , . . . , Sn
t ) and At = (A1

t , . . . , An
t ) to denote 

the global state and actions of all arms at time t. Each component of the global state evolves 
in a controlled Markov manner independently of other components. In particular, for any 
measurable subsets Bi ⊂ Si, i ∈ [n], we have
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P

(
St+1 ∈

∏
i∈[n]

Bi

∣∣∣∣ S1:t = s1:t, A1:t = a1:t

)
=

∏
i∈[n]

[∫

Bi

pi(si
t+1 | si

t, ai
t)dsi

t+1

]
.

At each time, a decision maker observes the global state St and can activate (i.e., select 
action Ai

t = 1) at most m, m < n, arms (thus, the decision maker may choose less than 
m actions, if desired). The decision maker chooses its actions according to a time-homo-
geneous Markov policy π : S → A(m), where S =

∏
i∈[n] S

i denotes the set of all global 
states and A(m):=

{
a ∈ {0, 1}n : ∥a∥1 ≤ m

}
 denotes the set of feasible actions. The per-

formance of any Markov policy π starting from an initial state s0 ∈ S is given by

	 V π(s0) = Qπ(s0, π(s0)),� (2)

where

	
Qπ(s0, a0) = Eπ

[ ∞∑
t=0

γt
∑
i∈[n]

ri(Si
t , Ai

t)
∣∣∣∣ S0 = s0, A0 = a0

]
,� (3)

where γ ∈ (0, 1) denotes the discount factor and ri ∈ [0, 1]. The objective is to find a Mar-
kov policy π which maximizes V π(s0).

The decision problem formulated above is a Markov decision process (MDP) and can 
be solved using dynamic programming Puterman (2014). However, the dynamic program-
ming solution suffers from the curse of dimensionality because both the state space S and 
action space A(m) grow exponentially with the number of arms. To avoid the curse of 
dimensionality, a popular heuristic is to use the Whittle index policy (Whittle, 1988), which 
has a linear complexity in the number of arms. We provide an overview of the Whittle index 
policy below.

2.2  Indexability and the Whittle index policy

Consider an arm, say arm αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, ri⟩ as described before. For any 
λ ∈ R, consider a modified version of the arm denoted by αi

λ = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, ri
λ⟩, 

where for all si ∈ Si, ai ∈ {0, 1}, we have

	 ri
λ(si, ai):=ri(si, ai) + λai.

Now, consider the problem of individually controlling the modified arm αi
λ. This auxiliary 

problem is an MDP and the optimal solution is given by the following dynamic program: 
find V i,⋆

λ : Si → R that satisfies the Bellman optimality equation:

	
V i,⋆

iλ (si) = max
ai∈{0,1}

{
ri

λ(si, ai) + γ

∫

Si

pi(s̄i | si, ai)V i,⋆
λ (s̄i)ds̄i

}
, ∀si ∈ Si.� (4)

Let πi,⋆
λ (si) denote the arg max of the right hand side of (4), where we choose πi,⋆

λ (si) = 1 
when the arg max is not unique. Then, standard results from Markov decision theory (Puter-
man, 2014) imply that the policy πi,⋆

λ  is optimal for controlling the modified arm αi
λ.
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Define the active set Πi
λ to be the states where the active action (ai = 1) is optimal, i.e., 

Πi
λ:={si ∈ Si : πi

λ
⋆ = 1}.

Definition 1  (Indexability) An arm αi is indexable if the active set Πi
λ is non-increasing in 

λ, i.e., for any λ1, λ2 ∈ R such that λ1 ≤ λ2, we have Πi
λ1 ⊆ Πi

λ2 .

Definition 2  (Whittle index) The Whittle index ωi : Si → R of an indexable arm  αi is 
defined as follows. for a state si ∈ Si, ωi(si) is the smallest value of λ for which si is part 
of the active set Πi

λ, i.e., ω(si) = inf{λ ∈ R : si ∈ Πi
λ}.

Alternatively, the Whittle index ωi(si) is a value of the penalty λ for which the optimal pol-
icy is indifferent between taking the active and the passive action when the arm is in state si.

A restless bandit problem is said to be indexable if all arms are indexable. For an index-
able restless bandit problem, the Whittle index policy is a heuristic policy which is defined 
as follows: First, we compute the Whittle indices of all arms {αi}i∈[n] offline. Then, at each 
time, we obtain the Whittle indices of the current state of all arms and play the arms with 
the m largest Whittle indices.

Various sufficient conditions for checking indexability and computing the Whittle index 
have been proposed in the literature. See Bertsimas and Niño-Mora (2000), Glazebrook et 
al. (2005), Glazebrook et al. (2006), Niño-Mora (2007), Akbarzadeh and Mahajan (2019), 
Gast et al. (2022) and references therein. Although the Whittle index policy is a heuristic, as 
mentioned in the introduction, it is optimal in some settings Gittins and Jones (1979), Weber 
and Weiss (1990), Lott and Teneketzis (2000) and performs close to optimal in a variety of 
applications  (Niño-Mora, 2007; Ansell et al., 2003; Glazebrook et al., 2005, 2006; Ayesta 
et al., 2010; Akbarzadeh & Mahajan, 2019).

2.3  Problem formulation: model mismatch in RMAB

We start by defining a class of metrics on probability measures known as integral probability 
metrics (IPM) (Müller, 1997a).

Definition 3  Let (X, G) be a measurable space and F denote a class of uniformly bounded 
measurable functions on (X, G). The integral probability metric (IPM) between two prob-
ability distributions µ, ν ∈ ∆(X) with respect to the function class F is defined as

	
dF(µ, ν):= sup

f∈F

∣∣∣∣
∫

X
fdµ −

∫

X
fdν

∣∣∣∣.

Some examples of IPM are total variation distance, Wasserstein distance, Kol-
mogorov distance, Bounded-Lipschitz distance, and maximum mean discrepancy. For 
total variation distance, F = {f : 1

2 span (f) ≤ 1}=:FTV; for Wasserstein distance, 
F = {f : Lip (f) ≤ 1}=:FW. We refer the reader to Subramanian et al. (2022) for details 
about other examples.

Given a function class F and a function f (not necessarily in F), the Minkowski functional 
(Schechter, 1996) of f with respect to F is defined as:
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	 ρF(f):= inf{ρ ∈ R>0 : ρ−1f ∈ F}.� (5)

When F = FTV (i.e., dF is the total variation distance), ρF(f) = 1
2 span (f); and when 

F = FW (i.e., dF is the Wasserstein distance), ρF(f) = Lip (f). A key implication of the 
definition of Minkowski functional is the following: for any function f, not necessarily in 
function class F,

	

∣∣∣∣
∫

X
fdµ −

∫

X
fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν),� (6)

We now formalize the notion of approximate restless bandit model.

Definition 4  Consider two arms α = ⟨S, {0, 1}, {p(a)}a∈{0,1}, r⟩ and 
α̂ = ⟨Ŝ, {0, 1}, {p̂(a)}a∈{0,1}, r̂⟩ defined on different state spaces S and Ŝ. We are also 
given a measurable aggregation function ϕ : S → Ŝ. Given a function space F and posi-
tive constants ε and δ, arm α̂ is called an (ε, δ)-approximation of arm α if for all s ∈ S and 
a ∈ {0, 1}:

	
∣∣r(s, a) − r̂(ϕ(s), a)

∣∣ ≤ ε, dF

(
p̃(·|s, a), p̂(·|ϕ(s), a)

)
≤ δ,

where p̃ accumulates the probabilities of the true model in the aggregated state space in the 
following sense: for any Borel subset B̂ of Ŝ

	
p̃(B̂ | s, a):=

∫

s′∈S
�{ϕ(s′) ∈ B̂}p(ds′|s, a).

Lemma 1  Let f̂ : Ŝ → R and f = f̂ ◦ ϕ and p̃, p be as described previously. Then we have 
for all s ∈ S and a ∈ {0, 1}:

	

∫

ŝ′∈Ŝ
f̂(ŝ′)p̃(dŝ′ | s, a) =

∫

s′∈S
f(s′)p(ds′ | s, a).

We fix the function space F and consider the following setup.

Approximation setup  Given a RMAB {αi}i∈[n], where αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, 
ri⟩, consider an approximate RMAB {α̂i}i∈[n], where α̂i = ⟨Ŝi

, {0, 1}, {p̂i(a)}a∈{0,1}, r̂i⟩ 

with aggregation function ϕi : Si → Ŝ
i
 such that arm α̂i is an (εi, δi)-approximation of arm 

αi.

Let Ŝ =
∏

i∈[n] Ŝ
i
. Define aggregation function ϕ : S → Ŝ given by 

ϕ(s1, . . . , sn) = (ϕ1(s1), . . . , ϕn(sn)). For any policy π̂ : Ŝ → A(m) and initial state s, let 
V̂ π̂(ŝ) denote the performance of policy π̂ in RMAB {α̂i}i∈[n]. Let π = π̂ ◦ ϕ denote the 
“lifting” of the approximate policy to the original space. let V π(s) denote the performance 
of π in RMAB {αi}i∈[n]. Let π∗ denote the optimal policy for the true model {αi}i∈[n] and 
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let π̂∗ denote the optimal policy for the approximate model {α̂i}i∈[n]. Note that π∗ ̸= π̂∗ ◦ ϕ 
in general, because the “lifting” notation is defined for a general policy π̂, whereas it need 
not be true that the lifted optimal approximate policy is the same as the optimal policy.

Definition 5  The sensitivity of any approximate policy π̂ : Ŝ → A(m) is defined as 

Gapπ − Ĝap
π̂

, where π = π̂ ◦ ϕ, Gapπ:=∥V π∗ − V π∥∞ is the sub-optimality gap in using 

lifted approximate policy π in the true model {αi}i∈[n] and Ĝap
π̂
:=∥V̂ π̂∗ − V̂ π̂∥∞ is the 

sub-optimality gap in using approximate policy π̂ in the approximate model {α̂i}i∈[n].

Let µ̂ be any heuristic policy for the approximate model {α̂i}i∈[n]. We are interested in the 
following approximation characterization.

Problem 1  For the approximation setup described above, characterize the sensitivity 

Gapµ̂◦ϕ − Ĝap
µ̂

, i.e., the additional loss in performance when using the heuristic solution 
corresponding to an approximate model in the true model, in terms of the approximation 
errors {(εi, δi)}i∈[n].

We present an upper bound on the sensitivity gap in Sect. 2.4. We illustrate these bounds 
via examples in Sect. 3, where we will use the Whittle index policy as a heuristic. For these 
examples, we will impose the following assumption on the model.

Assumption 1  All arms {α̂i}i∈[n] are indexable.

Remark 1  A solution to Problem 1 also provides a solution to the robust RMAB problem. In 
particular, consider a setting where we do not know the exact model of the arms, but know 
that the RMAB belongs to a collection A of RMAB models, where all models in A have 
the same state spaces but different dynamics and rewards. Suppose {α̂i}i∈[n] is a nominal 
model (not necessarily in A). Let {(εi, δi)}i∈[n] be such that for all {αi}i∈[n] ∈ A, and each 
i ∈ [n], the arm α̂i is an (εi, δi)-approximation of arm αi. Then the solution to Problem 1 
also provides a bound on the additional loss in performance when using a heuristic solu-
tion of the nominal model {α̂i}i∈[n] instead of using the heuristic solution of the true (but 
unknown) model in A.

2.4  Main result

For any Markov policy π̂: Ŝ → A(m), define

	
βπ̂
F :=ε + γδρF(V̂ π̂)

1 − γ
,

where (ε, δ) =
(∑

i∈[n] εi,
∑

i∈[n] δi
)

. Then we have the following.

Theorem 1  For the approximation setup of Sect. 2.3, we have

	 ∥Qπ∗
− Qµ̂◦ϕ∥∞ − ∥Q̂π̂∗

− Q̂µ̂∥∞ ≤ 3βπ̂∗

F + βµ̂
F � (7)
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and

	 ∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞ ≤ 3βπ̂∗

F + βµ̂
F . � (8)

The proof is given in Sect. 4.
The results of Theorem 1 can be interpreted as follows. Suppose the heuristic solution 

is computed using a synthetic/simulation-based approximate model of the real-world. The 
results of Theorem  1 then characterize the sensitivity of the heuristic solution to model 
mismatch. In particular, if the synthetic model were accurate, we would incur a loss less 

than Ĝap
µ̂

. The results of Theorem 1 shows that when the synthetic model is not accurate, 
an additional loss of Emodel:=3βπ̂∗

F + βµ̂
F  is incurred. The overall loss in using the heuristic 

solution of the approximate model in the real-world is less than Gapµ̂◦ϕ ≤ Ĝap
µ̂

+ Emodel.

2.5  Discussion of the results

2.5.1  The dependence on IPM

The upper bound of Theorem 1 depends on the IPM in two ways. First, the parameter δ (i.e. 
the degree of closeness of the approximate dynamics to the true dynamics) depends on the 
IPM. In addition, the ρF(·) term depends on the choice of IPM. See Sect. 3.1 for an example 
on how the upper bound depends on the choice of the IPM.

2.5.2  The role of indexability

When the heuristic solution is the Whittle index policy, Theorem 1 requires only the approx-
imate model to be indexable (Assumption 1). The original model is not required to be index-
able. This is a useful feature in settings where the original model is not known and only an 
approximate model is available.

2.5.3  The special case of Gittins index

In the rested case (i.e., when only one arm can be activated at each time and the arms which 
are not activated remain frozen), the Whittle index policy reduces to the Gittins index policy 
and is optimal. Therefore, in (8), V̂ π̂∗ = V̂ µ̂ and Epolicy = 0. Thus, Theorem 1 also provides 
an approximation guarantee for the rested RMAB which is different from the stopping-time 
based approximation guarantee in Katehakis and Veinott (1987).

2.5.4  Approximate optimality of Gittins index for “viscous when passive” restless 
bandits

Consider a restless bandit problem {αi}i∈[n], where αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, ri⟩ is 
such that the passive dynamics {pi(0)}i∈[n] are close to being frozen, i.e., given a function 
class F, we have

	 dF(pi(· | s, 0), idi(· | s)) ≤ δi, ∀s ∈ Si, i ∈ [n],
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where id(· | s) is a Dirac delta measure centered at s. We call such a model viscous restless 
bandits. Note that if δi = 0 for all i ∈ [n], then the above model reduces to the classical 
rested multi-armed bandit model, for which the Gittins index is optimal. However, when 
δi ̸= 0, then we are in general restless bandit settings and very little is known regarding the 
optimality of an index solution.

However, if m = 1 and {δi}i∈[n] are small, then we can approximate the model {αi}i∈[n] 
by a model {α̂i}i∈[n], where the approximate arm α̂i has the same state space and the 
same dynamics under active action as arm αi, but the dynamics under the passive action is 
id (thus, frozen). Thus, we can approximate the “viscous when passive” bandits by rested 
badits.

Let π̂∗ be the Gittins index policy for {α̂i}i∈[n], which is optimal for that model. The 
result of Theorem 1 shows that

	 ∥V π∗
− V π̂∗◦ϕ∥∞ ≤ 3βπ̂∗

F + βπ̂∗

F .

This quantifies the loss in performance incurred by the Gittins index policy in a “viscous 
when passive” restless bandit model.

2.6  Instance independent bounds

The bounds of Theorem  1 depend on the properties of the optimal value function V π∗
, 

which can be difficult to compute. We now present looser upper bounds which do not explic-
itly depend on V π∗

.

Proposition 1  When F = FTV (i.e. dF is the total variation distance) and Assumption 1 
holds, then we have

	

∥Qπ∗
− Qµ̂◦ϕ∥∞ − ∥Q̂π̂∗

− Q̂µ̂∥∞ ≤ 4ε

(1 − γ)

+ 3γδ span (r̂)
2(1 − γ)2 + γδ span (V̂ µ̂)

2(1 − γ)

� (9)

and

	

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞ ≤ 4ε

(1 − γ)

+ 3γδ span (r̂)
2(1 − γ)2 + γδ span (V̂ µ̂)

2(1 − γ)
,

� (10)

where (ε, δ) =
(∑

i∈[n] εi,
∑

i∈[n] δi
)

 and span (r̂) ≤
∑

i∈[n] span (r̂i).

See Sect. 4.4 for proof.
We now define a property of an arm.

Definition 6  Consider the function class FW, an arm αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, ri⟩ 
and a metric di on Si. If
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Lri := sup
s, s′ ∈ Si

a ∈ {0, 1}

|ri(s, a) − ri(s′, a)|
di(s, s′)

< ∞,

Lpi := sup
s, s′ ∈ Si

a ∈ {0, 1}

dFW(pi(· | s, a), pi(· | s′, a))
di(s, s′)

< ∞,

then the arm αi is said to be (Lri , Lpi )-Lipschitz.
Similarly, consider the approximate arm α̂i = ⟨Ŝi

, {0, 1}, {p̂i(a)}a∈{0,1}, r̂i⟩ and a metric 
d̂i on Ŝ. We define (Lr̂i , Lp̂i ) analogously to Definition 6. If both of these are finite, then the 
arm α̂i is said to be (Lr̂i , Lp̂i )-Lipschitz.

Proposition 2  When F = FW (i.e. dF is the Wasserstein distance), suppose Assumption 1 
holds, and for each i ∈ [n], arm α̂i is (Lr̂i , Lp̂i )-Lipschitz with Lp̂i < γ−1, we have

	

∥Qπ∗
− Qµ̂◦ϕ∥∞ − ∥Q̂π̂∗

− Q̂µ̂∥∞ ≤ 4ε

(1 − γ)

+ 3γδLr̂

(1 − γ)(1 − γLp̂)
+ γδ Lip (V̂ µ̂)

(1 − γ)

� (11)

and

	

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞ ≤ 4ε

(1 − γ)

+ 3γδLr̂

(1 − γ)(1 − γLp̂)
+ γδ Lip (V̂ µ̂)

(1 − γ)
,

� (12)

where (ε, δ) =
(∑

i∈[n] εi,
∑

i∈[n] δi
)

, Lr̂ ≤ maxi∈[n] Lr̂i  and Lp̂ ≤ maxi∈[n] Lp̂i .

See Sect. 4.5 for proof.

Remark 2  In order to compute the Lipschitz constant of V̂ µ̂ in (11) and (12), we need a 
metric on Ŝ. This metric is chosen as d̂(ŝ1, ŝ2) =

∑
i∈[n] d̂i(ŝi

1, ŝi
2).

Remark 3  The instance independent upper bounds of Propositions 1 and 2 still depend on 
the properties of the value function V̂ µ̂. In many applications, this value function is com-
puted numerically to characterize the performance of the proposed heuristic policy. If this 
value function is not available, we can upper bound its properties as follows. 

1.	 In Proposition 1, we can show that span (V̂ µ̂) ≤ span (r̂)/(1 − γ) by following an 
argument similar to that used in the proof of Proposition 1.

2.	 In Proposition 2, using (Hinderer, 2005, Theorem 4.2), we can show that if the heuristic 
policy µ̂ is Lipschitz, then 
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Lip (V̂ µ̂) ≤ Lr̂(1 + Lµ̂)

1 − γLp̂(1 + Lµ̂)
,

	  where Lµ̂ is the Lipschitz constant of the policy µ̂, and Lp̂(1 + Lµ̂) < γ−1.

3  Some illustrative examples

In this section, we provide some examples to illustrate our results.

3.1  An example with finite state space

Consider an RMAB with two arms αi = ⟨S, {0, 1}, {P i(ai)}ai∈{0,1}, ri⟩, 
i ∈ {1, 2}, where S = {1, 2, 3} shown in Fig. 1a. Suppose the arms are approximated by 
⟨S, {0, 1}, {P̂ i(ai)}ai∈{0,1}, r̂i⟩ shown in Fig. 1b. Note that since Ŝ = S, we take ϕ(s) = s. 
Consider the heuristic solution to be the Whittle index policy. We used the open source 
python library provided in Gast et al. (2023) to verify that the given approximate model is 
indexable. Thus, Assumption 1 is satisfied.

Fig. 1  The true and approximate model for the example of Sect. 3.1
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Let ω̂i(s) denote the Whittle index (for the approximate model) of arm i in state s. We 
compute these using the modified adaptive greedy algorithm (Akbarzadeh & Mahajan, 
2022a), and they are given by

	

ω̂1(1) = −0.308, ω̂1(2) = −0.309,ω̂1(3) = −0.140,

ω̂2(1) = 0.009, ω̂2(2) = 0.547,ω̂2(3) = −0.410.

The Whittle index policy µ̂ is given by

	
µ̂(s1, s2) = arg max

i∈{1,2}
ω̂i(si).� (13)

We are interested in bounding the performance loss in using the Whittle index policy for the 
approximate model, in the true model. For that matter, we first compute the value function 
of the Whittle index policy (in the true model) using the policy evaluation equation (Puter-
man, 2014). The value function is given by1

	
V µ̂◦ϕ =

[
16.172 16.562 16.165
16.474 16.864 16.401
16.509 16.899 16.638

]
.

Since the model is small, we can compute the optimal value function (of the true model), 
which we do using the value iteration algorithm (Puterman, 2014). The optimal value func-
tion is given by

	
V π∗

=

[
16.386 16.777 16.647
16.691 17.081 16.951
16.725 17.116 16.986

]
.

Thus, the Whittle index policy has a suboptimality gap of ∥V π∗ − V µ̂◦ϕ∥∞ = 0.550. Note 
that in practice we do not have access to the true model, so we cannot compute the subop-
timality gap ∥V π∗ − V µ̂◦ϕ∥∞. The results of Theorem 1 provide a method to bound the 
suboptimality gap.

We first compute the values of approximate errors (ε, δ) for arms 1 and 2 which are 
shown in Table 1 (for F = FW, we use d(ŝi

1, ŝi
2) = |ŝi

1 − ŝi
2| as the metric on Ŝ).

We also compute the value function of the Whittle index policy and the optimal value 
function (for the approximate model) using d(ŝ1, ŝ2). These are given by

1 The value function V µ̂◦ϕ is a function from S1 × S2 → R. We represent it as a matrix, where the (i, j)-th 

element corresponds to the value V µ̂◦ϕ(i, j).

Parameter Arm 1 Arm 2 Overall
ε 0.008 0.008 0.016
δFTV 0.02 0.02 0.04
δFW 0.03 0.03 0.06

Table 1  Parameters involved in 
Theorem 1 for Example 3.1
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V̂ µ̂ =

[
16.142 16.534 16.133
16.430 16.822 16.361
16.473 16.865 16.587

]
and V̂ π̂∗

=

[
16.349 16.741 16.597
16.641 17.033 16.889
16.683 17.075 16.931

]
.

Thus, the Whittle index policy has a suboptimality gap of ∥V̂ π̂∗ − V̂ µ̂∥∞ = 0.528 in the 
approximate model. Note that since we have access to the approximate model, the above 
value functions can be computed in practice allowing us to estimate the suboptimality gap 
in the approximate model. Now, we use the results of Theorem 1 to bound the suboptimality 
gap in the true model.

We first consider the case when F = FTV. In this case, ρF(·) = 1
2 span (·). Thus, the 

result (8) of Theorem 1 simplifies to

	

∥V π∗
− V µ̂◦ϕ∥∞

≤ 4ε

(1 − γ)
+ 3γδ span (V̂ π̂∗ )

2(1 − γ)
+ γδ span (V̂ µ̂)

2(1 − γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4 × 0.016
(1 − 0.9)

+ 3 × 0.9 × 0.04 × 0.726
2(1 − 0.9)

+ 0.9 × 0.04 × 0.733
2(1 − 0.9)

+ 0.528

≤ 1.163 + 0.528 = 1.691.

Now consider the case when F = FW. In this case, ρF(·) = Lip (·). Thus, the result (8) of 
Theorem 1 simplifies to

	

∥V π∗
− V µ̂◦ϕ∥∞

≤ 4ε

(1 − γ)
+ 3γδ Lip (V̂ π̂∗ )

(1 − γ)
+ γδ Lip (V̂ µ̂)

(1 − γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4 × 0.016
(1 − 0.9)

+ 3 × 0.9 × 0.06 × 0.392
(1 − 0.9)

+ 0.9 × 0.06 × 0.461
(1 − 0.9)

+ 0.528

≤ 1.524 + 0.528 = 2.052.

Thus, in this example, we obtain a tighter bound by using F = FTV. The above calculations 
show how the result of Theorem 1 can be useful in bounding the suboptimality gap of the 
Whittle index policy when the true model is not known.

3.2  An example with continuous state space

We now consider a model for machine maintenance with n machines and m repair persons. 
Each machine has a state s ∈ S := [0, 1], where s = 0 denotes a machine in a pristine state 
and s = 1 denotes a completely deteriorated machine. Active action a = 1 corresponds to 
a repair person servicing a machine in which case a per-step cost of ci is incurred and the 
state of the serviced machine resets to a pristine state. Passive action a = 0 corresponds to 
the machine not being serviced in which case a per-step cost of ξis is incurred, where ξi is 
machine dependent coefficient and the state s deteriorates to a worse state in [s, 1] uniformly 
at random.

Thus,
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ri(si, 0) = −ξisi, ri(si, 1) = −ci,

pi(·|si, 0) = U(si, 1), pi(·|si, 1) = δD(·),

where i ∈ {1, 2}, si ∈ S, U(x, y) denotes a uniform distribution on the interval [x, y], and 
δD(·) is the Dirac delta distribution centered at origin.

Consider the heuristic solution to be the Whittle index policy. Suppose we want to com-
pute the Whittle index by discretization. In particular, we consider a piecewise constant 
approximation of the model as follows. We divide the interval [0, 1] into H subintervals

	
[
0, 1

H

)
∪

[ 1
H , 2

H

)
∪ · · · ∪

[
1 − 1

H , 1
]

and consider the centers of each interval given by

	 Ŝ =
{ 1

2H , 3
2H , . . . , 2H−1

2H

}
.

Consider a quantization function ϕ : S → Ŝ, which maps any point to its closest point in Ŝ, 
i.e.,

	

ϕ(s) =




1
2H , if s ∈

[
0, 1

H

)
3

2H , if s ∈
[ 1

H , 2
H

)
...

...
2H−1

2H , if s ∈
[
1 − 1

H , 1
]

We then consider H = 100 and construct approximate arms 
α̂i = ⟨Ŝ, {0, 1}, {p̂i(a)}a∈{0,1}, r̂i⟩, where i ∈ {1, 2} and we have that for any ŝi, ŝi

+ ∈ Ŝ

	
p̂i(ŝi

+|ŝi, 0) =
{

1
k(ŝi) , if ŝi

+ > ŝi

0 otherwise
, p̂i(ŝi

+|ŝi, 1) =
{

1 if ŝi
+ = 1

2H
0 otherwise.

where k(ŝi) is a normalizing factor and

	 r̂i(ŝi, 0) = ri(ŝi, 0) = −ξiŝi, r̂i(ŝi, 1) = −ci.

Since the approximate model satisfies the restart property of Akbarzadeh and Maha-
jan (2022a, 2019), it is indexable. Thus, Assumption 1 is satisfied. We now consider two 
instances of this model.

3.2.1  Case 1: An illustrative small-scale example

We consider n = 2 and m = 1 and take ξ1 = 1.0, ξ2 = 0.5, c1 = 0.7, c2 = 0.3 and γ = 0.9. 
Since the approximate arms have a finite state space, we can use the modified adaptive greedy 
algorithm of Akbarzadeh and Mahajan (2019) to compute the Whittle indices ω̂i(ŝ), i ∈ [n], 
of the approximate model. The computed indices are shown in Fig. 2.

To compute the sub-optimality gap, we first compute the values of approximate errors 
(ε, δ) for arms 1 and 2 which are shown in Table 2 (for F = FW, we use d(s, s′) = |s − s′| 
as the metric on S and d̂(ŝ, ŝ′) = |ŝ − ŝ′| as the metric on Ŝ).

1 3



Annals of Operations Research

The state space of the approximate model is 1002, which is not too large. So, it is possible 
to compute the value function of the Whittle index policy V̂ µ̂, which we do using the policy 
evaluation equation (Puterman, 2014). The value function can be visualized by the 3D plot 
in Fig. 3a. We can also compute the optimal value function of the approximate model V̂ π̂∗

 

Fig. 3  Value functions V̂ µ̂ and V̂ π̂∗
 plotted for all states for the example of Sect. 3.2.1

 

Parameter Arm 1 Arm 2 Overall
ε 0.005 0.0025 0.0075
δFW 0.005 0.005 0.01

Table 2  Approximation errors for 
the example of Sect. 3.2.1
 

Fig. 2  Whittle indices ω̂ plotted for all states for the example of Sect. 3.2.1
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using the value iteration algorithm (Puterman, 2014). The value function can be visualized 
by the 3D plot in Fig. 3b. By comparing these two value functions, we get that the Whittle 
index policy has a suboptimality gap of ∥V̂ π̂∗ − V̂ µ̂∥∞ = 0.295 in the approximate model.

To bound the suboptimality gap in the true model, we need the Lipschitz constants 
Lip (V̂ π̂∗ ) and Lip (V̂ µ̂). We compute these by numerically maximizing the right hand side 
of (1) over all states and find that Lip (V̂ π̂∗ ) = 1.4 and Lip (V̂ µ̂) = 4.0. Now, using (8) of 
Theorem 1, we get

	

∥V π∗
− V µ̂◦ϕ∥∞

≤ 4ε

(1 − γ)
+ 3γδ Lip (V̂ π̂∗ )

(1 − γ)
+ γδ Lip (V̂ µ̂)

(1 − γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞
� (14)

	

≤ 4 × 0.0075
(1 − 0.9)

+ 3 × 0.9 × 0.01 × 1.4
(1 − 0.9)

+ 0.9 × 0.01 × 4.0
(1 − 0.9)

+ 0.295

= 0.3 + 0.378 + 0.36 + 0.295 = 1.333
� (15)

Next, note that the difference in suboptimality gaps

	 ∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞ = 1.038.

To put this bound in perspective, observe from Fig. 3a that maxs∈S V̂ µ̂(ϕ(s)) = −4.8 and 
mins∈S V̂ µ̂(ϕ(s)) = −5.5. Thus, the sensitivity of Whittle index policy to discretization 
is 18–21% of the approximate value function (depending on the start state). This large gap 
suggests that a finer discretization would be needed in this case.

3.2.2  Case 2: Large-scale example

We consider n = 100 and m = 40 and take a randomly generated instance where 
ξi ∼ U(0, 1), ci ∼ U(0, 1), and γ = 0.9. We compute the Whittle index of each arm using 
the algorithm proposed in Gast et al. (2023).

As in Case 1, we have εi = ξi/2 H  and δi = 1/2 H . For our randomly sampled instance, 
we obtain

	
ε =

∑
i∈[n]

εi = 0.2203, δ =
∑
i∈[n]

δi = 0.5

However, when we take H = 100, the state space of the approximate model is 100100, so 
it is not possible to compute V̂ µ̂ or V̂ π̂∗

 as we did in the small scale model. So, we focus 
on the distance of the sensitivity gap of the true and the approximate model and bound or 
approximate Lip (V̂ π̂∗ ) and Lip (V̂ µ̂) respectively.

For Lip (V̂ π̂∗ ), we use the upper bound used in Prop. 2. We first compute (Lr̂i , Lp̂i ) 
for each arm i ∈ [n] using Definition 6. We can then compute (Lr̂, Lp̂) for the MDP cor-
responding to our randomly sampled instance using Lemma 4 (with k = ∞) as

	
Lr̂ ≤ max

i∈[n]
Lr̂i = 0.9905, Lp̂ ≤ max

i∈[n]
Lp̂i = 0.5.

1 3



Annals of Operations Research

Then, from (Hinderer, 2005, Theorem 4.2), we get that

	
Lip (V̂ π̂∗

) ≤
L(k)

r̂

(1 − γL(k)
p̂ )

.

We take a different approach to approximate Lip (V̂ µ̂). Instead of exact policy evalua-
tion (which is intractable), we approximate V̂ µ̂ with a neural network. To train the neu-
ral network, we randomly sample Ne = 105 initial conditions. For each initial condition 
ŝ, we sample Se = 50 trajectories by rolling out T = 50 steps of the policy µ̂. Note that 
γT = 0.950 ≈ 5 × 10−3, which is small in comparison to the total return, so we can 
approximate the infinite horizon return by the return of the finite length trajectory. Thus, we 
approximate V̂ µ̂(ŝ) by averaging the discounted returns of the Se trajectories (this means 
we finally have a training batch of size 105). Then, we train a neural network using batch 
gradient descent to approximately learn V̂ µ̂. The hyper-parameters used for training are 
given in Appendix D.

Given the neural network to approximate V̂ µ̂, we approximate Lip (V̂ µ̂) by tak-
ing NL = 105 randomly generated pairs of initial conditions ŝ1 and ŝ2, and maximizing 
∥V̂ µ̂(ŝ1) − V̂ µ̂(ŝ2)∥1/∥ŝ1 − ŝ2∥1 over these initial conditions. Our calculations give 
Lip (V̂ µ̂) ≈ 0.2103.

We can now bound the suboptimality gap in the true model using (8) of Theorem 1:

	

∥V π∗
− V µ̂◦ϕ∥∞ − ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4ε

(1 − γ)
+ 3γδLr̂

(1 − γ)(1 − γLp̂)
+ γδ Lip (V̂ µ̂)

(1 − γ)

= 4 × 0.2203
(1 − 0.9)

+ 3 × 0.9 × 0.5 × 0.9905
(1 − 0.9)(1 − 0.9 × 0.5)

+ 0.9 × 0.5 × 0.2103
(1 − 0.9)

= 8.812 + 24.312 + 0.9464 = 34.0704.

To put this bound in perspective, we use the random rollout data used to approximate 
Lip (V̂ µ̂) and obtain maxs∈S V̂ µ̂(ϕ(s)) = −156.99 and mins∈S V̂ µ̂(ϕ(s)) = −165.73. 
Thus, the sensitivity of Whittle index policy to discretization is 20–22% of the approximate 
value function (depending on the start state). This is a large gap, but we conjecture that 
this is due to the crude bound on Lip (V̂ π̂∗ ) and that the gap will be tighter if the Lipschitz 
constant of the optimal value function of the approximate model could be computed more 
accurately.

4  Proof of main result

4.1  Roadmap of the proof

The RMAB {αi}i∈[n] can be considered as an MDP M = ⟨S, A(m), p, r⟩ where for any 
st, st+1 ∈ S and at ∈ A(m), we have
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p(dst+1 | st, at) =

∏
i∈[n]

pi(dsi
t+1 | si

t, ai
t), � (16)

	
r(st, at) =

∑
i∈[n]

ri(si
t, ai

t). � (17)

The approximate RMAB {α̂i}i∈[n] can also be considered as an MDP M̂ = ⟨Ŝ, A(m), p̂, r̂⟩ 
where for any ŝt, ŝt+1 ∈ Ŝ and at ∈ A(m), we have

	
p̂(dŝt+1 | ŝt, at) =

∏
i∈[n]

p̂i(dŝi
t+1 | ŝi

t, ai
t), � (18)

	
r̂(ŝt, at) =

∑
i∈[n]

r̂i(ŝi
t, ai

t). � (19)

The main intuition of our proof is that if α̂i is an (εi, δi)-approximation of arm αi for each 
i ∈ [n], then M̂ is an (ε, δ)-approximation of M in some appropriate sense to be described 
later, where (ε, δ) can be characterized in terms of {(εi, δi)}i∈n. Then, we can use approxi-
mation results from MDPs (Gelada et al., 2019; Subramanian et al., 2022) to derive approxi-
mation bounds for RMABs. In the rest of this section, we formalize this intuition.

4.2  Preliminary results

Definition 7  Consider the two MDPs M = ⟨S, A(m), p, r⟩ and M̂ = ⟨Ŝ, A(m), p̂, r̂⟩ 
which are defined on the same action space. We are also given a measurable aggregation 
function ϕ : S → Ŝ. Given a function space F and positive constants ε and δ, the MDP M̂ is 
called an (ε, δ)-approximation of the MDP M if for all s ∈ S and a ∈ A(m):

	
∣∣r(s, a) − r̂(ϕ(s), a)

∣∣ ≤ ε, dF

(
p̃(·|s, a), p̂(· | ϕ(s), a)

)
≤ δ,

where p̃ accumulates the probabilities of the true model in the aggregated state space in the 
following sense: for any Borel subset B̂ of Ŝ

	
p̃(B̂ | s, a):=

∫

s′∈S
�{ϕ(s′) ∈ B̂}p(ds′|s, a).

An immediate implication of the definition of the accumulated measure p̃ is the following.

Lemma 2  Let f̂ : Ŝ → R and f = f̂ ◦ ϕ and p̃, p be as described previously. Then we have 
for all s ∈ S and a ∈ A(m):

	

∫

ŝ′∈Ŝ
f̂(ŝ′)p̃(dŝ′ | s, a) =

∫

s′∈S
f(s′)p(ds′ | s, a).

Now we formalize the approximation bound between M and M̂.
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Lemma 3  When F = FTV or F = FW, then the MDP M̂ is an (ε, δ)-approximation of the 
MDP M, where

	
(ε, δ) =

(∑
i∈[n]

εi,
∑
i∈[n]

δi

)
.� (20)

See Appendix B for proof.
From standard results of Markov decision theory (Puterman, 2014), we know that for 

a given policy π, the performance V π  defined by  (2) satisfies the following fixed point 
equation: 

	 V π(s) = Qπ(s, π(s)), � (21a)

	
Qπ(s, a) = E[r(s, a)] + γ

∫

S
V π(s′)p(ds′ | s, a). � (21b)

Similarly, for any policy π̂ let V̂ π̂  denote the performance of policy π̂ in the approximate 
model M̂. Then, V̂ π̂  satisfies the following fixed point equation: 

	 V̂ π̂(ŝ) = Q̂π̂(ŝ, π̂(ŝ)), � (22a)

	
Q̂π̂(ŝ, a) = E[r̂(ŝ, a)] + γ

∫

Ŝ
V̂ π̂(ŝ′)p̂(dŝ′ | ŝ, a). � (22b)

Then, we have the following.

Proposition 3  For the approximate setup described in Sect. 2.3 and for any policy π̂

	 ∥V π̂◦ϕ − V̂ π̂ ◦ ϕ∥∞ ≤ ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞ ≤ βπ̂
F .� (23)

 Furthermore, for any policies π∗ and π̂∗ which are optimal for M and M̂, we have

	 ∥V π∗
− V̂ π̂∗

◦ϕ∥∞ ≤ ∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞ ≤ βπ̂∗

F . � (24)

Therefore, by the triangle inequality

	 ∥Qπ∗
− Qπ̂∗◦ϕ∥∞ ≤ 2βπ̂∗

F and ∥V π∗
− V π̂∗◦ϕ∥∞ ≤ 2βπ̂∗

F .� (25)

Proof  For the proof of the first part of (23), observe that from (21) and (22) we have that 
for any s ∈ S,
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|V π̂◦ϕ(s) − V̂ π̂(ϕ(s))| =
∣∣Qπ̂◦ϕ(s, π̂(ϕ(s))) − Q̂π̂(ϕ(s), π̂(ϕ(s)))

∣∣
(a)
≤∥Qπ̂◦ϕ(s, ·) − Q̂π̂(ϕ(s), ·)∥∞

(b)
≤∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞,

 where (a) and (b) follow from the definition of the sup norm. Supremizing the LHS over 
s ∈ S, we get

	 ∥V π̂◦ϕ − V̂ π̂ ◦ ϕ∥∞ ≤ ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞.� (26)

 This proves the first part of (23). Now, we bound ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞ as follows: for any 
fixed s ∈ S, a ∈ A(m), from (21) and (22), we have

	

|Qπ̂◦ϕ(s, a) − Q̂π̂(ϕ(s), a)|
(c)
≤|E[r(s, a)] − E[r̂(ϕ(s), a)]| + γ

∫

S
|V π̂◦ϕ(s′) − V̂ π̂(ϕ(s′))|p(ds′ | s, a)

+ γ

∣∣∣∣
∫

S
V̂ π̂(ϕ(s′))p(ds′ | s, a) −

∫

Ŝ
V̂ π̂(ŝ′)p̂(dŝ′ | ϕ(s), a)

∣∣∣∣
(d)
≤ε + γ∥Qπ̂◦ϕ − Q̂π̂∥∞ + γ

∣∣∣∣
∫

Ŝ
V̂ π̂(ŝ′)p̃(dŝ′ | s, a) −

∫

Ŝ
V̂ π̂(ŝ′)p̂(dŝ′ | ϕ(s), a)

∣∣∣∣
(e)
≤ε + γ∥Qπ̂◦ϕ − Q̂π̂ ◦ ϕ∥∞ + γρF(V̂ π̂)δ,

� (27)

 where (c) follows from the definition of Qπ̂◦ϕ and Q̂π̂ , adding and subtracting the V̂ π̂  term 
and the triangle inequality; (d) and (e) follow from (26), Lemma 2 with f̂ = V̂ π̂  and the 
definition of an (ε, δ)-approximation for an MDP. Supremizing the LHS of (27) over all 
s, a ∈ S × A(m) and re-arranging terms, we get

	
∥Qπ̂◦ϕ − Q̂π̂◦ϕ∥∞ ≤ ε + γρF(V̂ π̂)δ

(1 − γ)
= βπ̂

F .� (28)

This proves the second part of (23).
Similarly, for the proof of the first part of (24), observe that from (21) and (22) we have 

that for any s ∈ S,

	

|V π∗
(s) − V̂ π̂∗

(ϕ(s))| =
∣∣∣∣ max
a∈A(m)

Qπ∗
(s, a) − max

a∈A(m)
Q̂π̂∗

(ϕ(s), a)
∣∣∣∣

(e)
≤ max

a∈A(m)

∣∣Qπ∗
(s, a) − Q̂π̂∗

(ϕ(s), a)
∣∣

≤ ∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞,

where (e) follows from the inequality max f(x) − max g(x) ≤ max |f(x) − g(x)|. 
Supremizing the LHS over s ∈ S, we get
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	 ∥V π∗
− V̂ π̂∗

◦ϕ∥∞ ≤ ∥Qπ∗
− Q̂π̂∗

◦ϕ∥∞.� (29)

This proves the first part of (23). Now, we bound ∥Qπ∗ − Q̂π̂∗ ◦ϕ∥∞ as follows: for any 
fixed s ∈ S, a ∈ A(m), from (21) and (22), we have

	

|Qπ∗
(s, a) − Q̂π̂∗

(ϕ(s), a)|
(f)
≤ |E[r(s, a)] − E[r̂(ϕ(s), a)]|

+ γ

∫

S
|V π∗

(s′) − V̂ π̂∗
(ϕ(s′))|p(ds′ | s, a)

+γ

∣∣∣∣
∫

S
V̂ π̂∗

(ϕ(s′))p(ds′ | s, a) −
∫

Ŝ
V̂ π̂∗

(ŝ′)p̂(dŝ′ | ϕ(s), a)
∣∣∣∣

(g)
≤ε + γ∥Qπ∗

− Q̂π̂∗
∥∞

−γ

∣∣∣∣
∫

Ŝ
V̂ π̂∗

(ŝ′)p̃(dŝ′ | s, a) −
∫

Ŝ
V̂ π̂∗

(ŝ′)p̂(dŝ′ | ϕ(s), a)
∣∣∣∣

(h)
≤ ε + γ∥Qπ∗

− Q̂π̂∗
◦ϕ∥∞ + γρF(V̂ π̂∗

)δ,

� (30)

where (f) is the same as (c); (g),  (h) follow from (29), lemma  2 with f̂ = V̂ π̂∗
 and the 

definition of an (ε, δ)-approximation for an MDP. Supremizing the LHS of (30) over all 
s, a ∈ S × A(m) and re-arranging terms, we get

	
∥Qπ∗

− Q̂π̂∗
◦ϕ∥∞ ≤ ε + γρF(V̂ π̂∗ )δ

(1 − γ)
= βπ̂∗

F .� (31)

This proves the second part of (23).
Finally, to show the first part of (25), consider

	

∥Qπ∗
− Qπ̂∗◦ϕ∥∞

(h)
≤ ∥Qπ∗

− Q̂π̂∗
◦ϕ∥∞ + ∥Qπ̂∗◦ϕ − Q̂π̂∗

◦ϕ∥∞

(i)
≤βπ̂∗

F + βπ̂∗

F = 2βπ̂∗

F ,

where (h) follows from the triangle inequality; (i) follows from (28) with π̂ = π̂∗ and (31). 
To show the second part of (25), consider

	

∥V π∗
− V π̂∗◦ϕ∥∞

(j)
≤∥V π∗

− V̂ π̂∗
◦ϕ∥∞ + ∥V π̂∗◦ϕ − V̂ π̂∗

◦ϕ∥∞

(k)
≤ ∥Qπ∗

− Q̂π̂∗
◦ϕ∥∞ + ∥Qπ̂∗◦ϕ − Q̂π̂∗

◦ϕ∥∞

(l)
≤βπ̂∗

F + βπ̂∗

F = 2βπ̂∗

F ,
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where (j) follows from the triangle inequality; (k) follows from (26) with π̂ = π̂∗ and (29); 
(l) follows from (28) with π̂ = π̂∗ and (31). � □

4.3  Proof of Theorem 1

For the first part of the theorem, from the triangle inequality, we have

	

∥Qπ∗
− Qµ̂◦ϕ∥∞ ≤ ∥Qπ∗

− Qπ̂∗◦ϕ∥∞ + ∥Qπ̂∗◦ϕ − Q̂π̂∗
◦ϕ∥∞

+ ∥Q̂π̂∗
− Q̂µ̂∥∞ + ∥Q̂µ̂◦ϕ − Qµ̂◦ϕ∥∞

(a)
≤ 2βπ̂∗

F + βπ̂∗

F + ∥Q̂π̂∗
− Q̂µ̂∥∞, +βµ̂

F ,

� (32)

where each term of (a) is bound using Prop. 3. Rearranging terms proves (7).
For the second part of the theorem, from triangle inequality we have

	

∥V π∗
− V µ̂◦ϕ∥∞ ≤ ∥V π∗

− V π̂∗◦ϕ∥∞ + ∥V π̂∗◦ϕ − V̂ π̂∗
◦ϕ∥∞

+ ∥V̂ π̂∗
− V̂ µ̂∥∞ + ∥V̂ µ̂ − V µ̂◦ϕ∥∞

(a)
≤ 2βπ̂∗

F + βπ̂∗

F + ∥V̂ π̂∗
− V̂ µ̂∥∞ + βµ̂

F ,

� (33)

where each term of (b) is bound using Prop. 3. Rearranging the terms proves (8).

4.4  Proof of Proposition 1

First, observe that for F = FTV,

	
ρF(V̂ π̂∗

) = 1
2

span (V̂ π̂∗
)
(a)
≤ 1

2
span (r̂)
(1 − γ)

(b)
≤ 1

2

∑
i∈[n] span (r̂i)

(1 − γ)
.

where (a) follows from (Subramanian et al, 2022, Lemma 39) and (b) follows because span 
is a semi-norm (Puterman, 2014). Using the above bound in (7) and (8) and using Lemma 3 
to bound (ε, δ), we get (9) and (10).

4.5  Proof of Proposition 2

Recall that the state space Si of each arm is a metric space with metric di and {0, 1}i is 
a metric space with metric d̂i. Define a metric d on S as follows: for any q ∈ [1, ∞] and 
s, s′ ∈ S, d(s, s′) =

(∑
i∈[n] di(si, s′i)q

)1/q . Define d̂ in an analogous manner.

We now define Lipschitz continuity for MDP M.
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Definition 8  Given MDP M = ⟨S, A(m), p, r⟩, if

	

Lr:= sup
s, s′ ∈ S

a ∈ A(m)

|r(s, a) − r(s′, a)|
d(s, s′)

< ∞,

Lp:= sup
s, s′ ∈ S

a ∈ A(m)

dFW(p(· | s, a), p(· | s′, a))
d(s, s′)

< ∞,

then the MDP M is said to be (Lr, Lp)-Lipschitz.
Similarly, when this is true for the approximate MDP M̂ = ⟨Ŝ, A(m), p̂, r̂⟩, then it is said 
to be (Lr̂, Lp̂)-Lipschitz.

Lemma 4  If arms α̂i are (Lr̂i , Lp̂i )-Lipschitz, for all i ∈ [n], and k ∈ [1, ∞], such that 
1/k + 1/q = 1, then the MDP M̂ = ⟨Ŝ, A(m), p̂, r̂⟩ is (L(k)

r̂ , L(k)
p̂ )-Lipschitz, where

	
L(k)

r̂ ≤
(∑

i∈[n]

(Lr̂i )k

)1/k

, L(k)
p̂ ≤

(∑
i∈[n]

(Lp̂i )k

)1/k

.� (34)

Proof  See Appendix C. � □

Now, observe that for F = FW,

	
ρF(V̂ π̂∗

) = Lip (V̂ π̂∗
)
(a)
≤

L(k)
r̂

(1 − γL(k)
p̂ )

.� (35)

where (a) follows from (Hinderer, 2005, Theorem 4.2). To prove Proposition 2, we will take 
k = ∞ because doing so gives the tighest possible bound in (35). Substititing (35) in (7) 
and (8) and using Lemma 3 to bound (ε, δ), we get (11) and (12).

5  Conclusions

In conclusion, we considered a restless multi-armed bandit problem with uncertain arm 
models and analyzed the sensitivity of heuristic policies such as the Whittle index policy. 
Our results use ideas from sensitivity analysis of MDPs, but bound the performance loss in 
terms of the model mismatch of each arm and the choice of metric used to compare tran-
sition matrices. Thus, our results show how to incorporate model uncertainty in existing 
heuristic solutions for restless bandits.
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A preliminary results

We first prove some preliminary results.

Lemma 5  Consider any f : S → R. Pick an arm i ∈ [n] and arbitrarily fix s−i ∈ S−i. Define 
f i : Si → R by f i(si) = f(si, s−i), for any si ∈ Si. Then 

(a)	 span (f i) ≤ span (f).
(b)	 Lip (f i) ≤ Lip (f).

Proof  (a)	 Consider for any s−i ∈ S−i

	

span (f i) = sup
si

(1),si
(2)∈Si

∣∣∣∣f i(si
(1)) − f i(si

(2))
∣∣∣∣

(a)= sup
si

(1),si
(2)∈Si

∣∣∣∣f(si
(1), s−i) − f(si

(2), s−i)
∣∣∣∣

(b)
≤ sup

s(1),s(2)∈S

∣∣∣∣f(s(1)) − f(s(2))
∣∣∣∣

= span (f),

 where (a) follows from the definition of f i given s−i and (b) follows from the fact that tak-
ing supremum over all S−i will given an upper bound to any specific s−i.

(b)	 Again for any s−i ∈ S−i

	

Lip (f i) = sup
si,s̃i∈Si

|f i(si) − f i(s̃i)|
di(si, s̃i)

(c)= sup
si,s̃i∈Si

|f(si, s−i) − f(s̃i, s−i)|
d((si, s−i), (s̃i, s−i))

(d)
≤ sup

s,s̃∈S

|f(s) − f(s̃)|
d(s, s̃)

= Lip (f),

 where (c) follows from the definition of metric d and function f i given s−i and (d) follows 
from the fact that taking supremum over all S−i will given an upper bound to any specific 
s−i.� □

For the ease of notation, when F = FTV = {f : S → R : 1
2 span (f) ≤ 1}, define 

Fi = {f i : Si → R : 1
2 span (f i) ≤ 1}. Similarly when F = FW = {f : S → R : Lip (f) ≤ 1}, 

define Fi = {f i : Si → R : Lip (f i) ≤ 1}. Lemma 5 implies that if f ∈ F, for any s−i ∈ S−i, 
f i (as defined in Lemma 5) belongs to Fi.
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Lemma 6  Let µi, νi be probability densities on Si. Define µ = µ1 ⊗ · · · ⊗ µn and 
ν = ν1 ⊗ · · · ⊗ νn. Then for F = FTV or F = FW,

	
dF(µ, ν) ≤

∑
i∈[n]

dFi (µi, νi).

Proof  We prove the result by induction on n. The result is trivially true for n = 1. This 
forms the basis of induction. Now assume that the result is true for n = k − 1 and consider 
the case for n = k.

For any f ∈ F, S−k and s−k being the state space and the state by excluding the kth 
component, we have

	

∣∣∣∣
∫

S
fdµ −

∫

S
fdν

∣∣∣∣

=
∣∣∣∣
∫

Sk

∫

S−k

f(sk, s−k)
[
µk(sk)µ−k(s−k) − νk(sk)ν−k(s−k)

]
dskds−k

∣∣∣∣
(a)
≤

∣∣∣∣
∫

Sk

∫

S−k

f(sk, s−k)
[
µk(sk)µ−k(s−k) − µk(sk)ν−k(s−k)

]
dskds−k

∣∣∣∣

+
∣∣∣∣
∫

Sk

∫

S−k

f(sk, s−k)
[
µk(sk)ν−k(s−k) − νk(sk)ν−k(s−k)

]
dskds−k

∣∣∣∣
(b)
≤

∫

Sk

∣∣∣∣
∫

S−k

f(sk, s−k)
[
µ−k(s−k) − ν−k(s−k)

]
ds−k

∣∣∣∣µk(sk)dsk

+
∫

S−k

∣∣∣∣
∫

Sk

f(sk, s−k)
[
µk(sk) − νk(sk)

]
dsk

∣∣∣∣ν−k(s−k)ds−k

� (36)

where (a) follows from adding and subtracting the same term and using the triangle inequal-
ity and (b) also follows from the triangle inequality. Now observe that for a fixed sk, by 
Lemma 5, f(sk, ·) ∈ F−k. Therefore,

	

∣∣∣∣
∫

S−k

f(sk, s−k)
[
µ−k(s−k) − ν−k(s−k)

]
ds−k

∣∣∣∣ ≤ dF−k (µ−k, ν−k)� (37)

and similarly,

	

∣∣∣∣
∫

Sk

f(sk, s−k)
[
µk(sk) − νk(sk)

]
dsk

∣∣∣∣ ≤ dFk (µk, νk)� (38)

Substituting (37) and (38) in (36), we get
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∣∣∣∣
∫

S
fdµ −

∫

S
fdν

∣∣∣∣ ≤
∫

Sk

dF−k (µ−k, ν−k)µk(sk)dsk +
∫

S−k

dFk (µk, νk)µ−k(s−k)ds−k

= dFk (µk, νk) + dF−k (µ−k, ν−k)
(c)
≤

∑
i∈[k]

dFi (µi, νi),

where (c) follows from the induction hypothesis which is true for k − 1. The final result 
follows from induction. � □

Lemma 7  Consider p̃ as defined in Definition 7 and p̃i as defined in Definition 4 for arm 
αi with state aggregation function ϕi. Then for all s ∈ S, a ∈ A(m), any Borel subsets 
B̂i ⊂ Ŝ

i
 and B̂ =

∏
i∈[n] B̂i, we have

	
p̃(B̂ | s, a) =

∏
i∈[n]

p̃i(B̂i | si, ai).� (39)

Proof  Consider the term on the RHS, it can be re-written as follows

	

∏
i∈[n]

p̃i(B̂i | si, ai) =
∏

i∈[n]

∫

s̄i∈Si

�{ϕi(s̄i) ∈ B̂i}pi(ds̄i | si, ai)

=
∫

s̄i∈Si

∏
i∈[n]

�{ϕi(s̄i) ∈ B̂i}pi(ds̄i | si, ai)

(a)=
∫

s̄∈S
�{ϕ(s̄) ∈ B̂}p(ds̄ | s, a)

= p̃(B̂ | s, a).

where (a) follows from the fact that the states for each arm evolve independently. � □

B Proof of Lemma 3

For the first part, consider

	

|r(s, a) − r̂(ϕ(s), a)| =

∣∣∣∣∣∣
∑
i∈[n]

ri(si, ai) −
∑
i∈[n]

r̂i(ϕi(si), ai)

∣∣∣∣∣∣
(a)
≤

∑
i∈[n]

∣∣ri(si, ai) − r̂i(ϕi(si), ai)
∣∣ (b)

≤
∑
i∈[n]

εi.

where (a) follows from the triangle inequality and (b) follows from the assumption on the 
arms. This proves the first part of the Lemma.
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The second part follows from the definition of p (Eq. (16)), p̂ (Eq. (18)), p̃ (Eq. (39)) and 
Lemma 6 applied with Lemma 1, Lemma 2.

C Proof of Lemma 4

For the first part, consider for any ŝ(1), ŝ(2) ∈ Ŝ, a ∈ A

	

∣∣r̂(ŝ(1), a) − r̂(ŝ(2), a)
∣∣ =

∣∣∣∣∣∣
∑
i∈[n]

r̂i(ŝi
(1), ai) −

∑
i∈[n]

r̂i(ŝi
(2), ai)

∣∣∣∣∣∣
(a)
≤

∑
i∈[n]

∣∣∣r̂i(ŝi
(1), ai) − r̂i(ŝi

(2), ai)
∣∣∣

(b)
≤

∑
i∈[n]

Lr̂i di(ŝi
(1), ŝi

(2))

(c)
≤

(∑
i∈[n]

(Lr̂i )k

)1/k

d(ŝ(1), ŝ(2)).

where (a) follows from the triangle inequality, (b) follows from the assumption on the arms 
and (c) follows from Hölder’s inequality and the definition of metric d.

For the second part, consider for any ŝ(1), ŝ(2) ∈ Ŝ, a ∈ A

	

dF(p̂(·|ŝ(1), a), p̂(·|ŝ(2), a))
(d)
≤

∑
i∈[n]

dFi (p̂i(·|ŝi
(1), ai), p̂i(·|ŝi

(2), ai))

(e)
≤

∑
i∈[n]

Lp̂i di(ŝi
(1), ŝi

(2))

(f)
≤

(∑
i∈[n]

(Lp̂i )k

)1/k

d(ŝ(1), ŝ(2)).

Parameter Value
Input size H = 100
Number of linear layers 3
Hidden layer size 50
Activation function ReLU
Number of episodes (Ne) 105

Samples per episode (Se) 50
ADAM learning rate 0.001
Number of gradient steps 105

Samples for computing Lip (V̂ µ̂), (NL) 105

Table 3  Hyperparameters 
used in computing Lip (V̂ µ̂) 
approximately
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 where (d) follows from Lemma 6, (e) follows from the assumption on the arms and (f) fol-
lows from Hölder’s inequality and the definition of metric d.

D Hyperparameters used in the example in Sect. 3.2.2

The parameters used in our experiment are described in Table 3.
We use a neural network with 3 hidden layers of size 50 each followed by ReLU activa-

tions. The input to the neural network is a vector of length H = 100 which contains the 
randomly initialized state ŝ, where each component of the vector is a component ŝ of ŝ. The 
random initialization for these state components of each of the arms is done on the basis of 
the model dynamics given by ξi and δi which are fixed throughout the experiment.

A total of Ne = 105 initializations ŝ are used to construct the batch. For each of these 
initializations, we have Se rollouts from the starting state to get a proper estimate of the 
average. Finally, we use this entire batch to do gradient descent using ADAM for 105 gradi-
ent steps.
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