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Abstract— The multi-armed bandit (MAB) problem has been
an active area of research since the early 1930s. The majority
of the literature restricts attention to i.i.d. or Markov reward
processes. In this paper, the finite-parameter MAB problem
with time-dependent reward processes is investigated. An upper
confidence bound (UCB) based index policy, where the index
is computed based on the maximum-likelihood estimate of the
unknown parameter, is proposed. This policy locks on to the
optimal arm in finite expected time but has a super-linear
regret. As an example, the proposed index policy is used for
minimizing prediction error when each arm is a auto-regressive
moving average (ARMA) process.

I. INTRODUCTION

A. Motivation

The multi-armed bandit (MAB) problem refers to a

sequential allocation problem in which a unit resource

is allocated to one of several competitive alternative ac-

tions/projects and a random reward (dependent on the chosen

alternative) is obtained. The decision maker is not aware of

the probability distribution of the reward process of each

alternative and must use some allocation rule (or policy) to

maximize the cumulative expected reward asymptotically in

time.

The name multi-armed bandit, derives from an imagined

slot machine with multiple arms. When an arm is pulled,

the player wins a random reward following some unknown

probability distribution. The objective of the player is to

choose a policy to maximize the cumulative expected reward

over the long term.

Multi-armed bandit problems are paradigms of allocation

problems in which the decision maker experiences the explo-

ration versus exploitation dilemma: the player must balance

the exploitation of actions that did well in the past and

the exploration of actions that might give higher rewards

in the future. Some motivating examples of MAB problems

are advertisement placement, internet routing, and cognitive

radio communications.

In advertisement placement [9], the MAB problem arises

in terms of deciding which advertisement to show to the

next visitor of some web-page, among a finite set of adver-

tisements. The total reward in this case is associated to the

number of click-outs that the advertisement receives.
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In Internet routing [10], the MAB problem arises in terms

of choosing a route between a source and a destination,

among several alternatives, to transmit a packet at each

transmission instant. The reward in this case is associated to

the transmission time or the transmission cost of the packet.

In cognitive radio communications [11], the MAB problem

arises in terms of choosing which channel a cognitive user

should attempt to use in different time slots. The reward in

this case is associated to the number of bits that the cognitive

user is able to send at each time slot.

B. Literature Overview

Multi-armed bandit problems have been investigated since

the 1930s [14]. See [16] for a historical survey. The break

through in the solution to the MAB problem was achieved

by Lai and Robbins [5] who constructed an allocation policy

that asymptotically achieves the optimal regret of O(logT ),
where T is the total number of plays. Their results assumed

K independent arms, each generating an i.i.d. sequence of

rewards. These assumptions are also present in the vast

majority of subsequent literature. We refer the reader to [15]

for a survey.

One important line of work is to identify computationally

efficient strategies that are also optimal in some sense.

Agrawal [4] proposed a class of index type policies (i.e,

policies that choose the arm with the highest index at

each time), where the index depends on the sample mean

of the reward process, and showed that these policies are

asymptotically optimal, i.e. they achieve a regret of O(logT ).
Auer et. al. [3], proposed a similar index type policy, which

they called UCB1, and showed that the regret is O(logT )
uniformly in time (rather than asymptotically).

There has been less work on the MAB problems with

independent arms and time-dependent reward process, most

of which is restricted to Markov processes. The earliest work

with such a setting is [7], where the reward of each arm is

generated by Markov chain with a parametrized transition

probability matrix. The authors proposed an index-based

policy that achieves an asymptotically optimal regret. A more

recent work in this setting is [12] in which a policy based on

UCB1 is proposed; this policy achieves a logarithmic regret

bound, uniformly in time.

To the best of our knowledge, there has been no study of

the MAB problem with independent arms and general time-

dependent reward processes such as an ARMA process, etc.

The purpose of this paper is to investigate this set up.



C. Contributions

In this paper we consider the MAB problem with finite

parameter spaces. Our main results are the following:

• We propose an allocation rule that depends on

maximum-likehood estimate of the unknown parameter

for each arm; as such, it applies to general time-

dependent reward processes.

• Under some assumptions on the reward process, we

show that the proposed policy is an upper confidence

bound as defined in [4].

• The proposed allocation rule almost surely locks on to

the optimal arm in finite expected time but has a super-

linear regret. The finite lock-on time is an extremely

desirable property of learning algorithms. The standard

allocation rules for MAB, such as UCB and UCB1, do

not have this property.

II. MODEL AND PROBLEM FORMULATION

Consider K mutually independent real-valued processes

{Y k
n }∞

n=1, k = 1, . . . ,K, defined on a common measurable

space (Ω,A ). The probability law on the k-th reward process

{Y k
n }∞

n=1 belongs to a finite set of probability measures

{Pk
θ ;θ ∈ Θk}, where Θk is a known finite set. Let P

k
θ∗

k

denote the true probability law and θ ∗
k denote the unique

true parameter for the k-th reward process. Let f k
θ and µk

θ
denote the probability density and mean, respectively, of the

law P
k
θ , θ ∈ Θk. We assume that for all k and all θ ∈ Θk,

f k
θ exists and |µk

θ | < ∞. Let k∗ , argmax
k∈{1,...,K}

{µk
θ∗

k
} denote the

arm with the highest mean reward.

A decision maker sequentially samples one of the K

reward processes. Let Zt denote the t-th sample. At time

t, the decision maker samples the arm

ut = φt(Z1, . . . ,Zt−1),

where φt : Rt−1 →{1, . . . ,K} is called the allocation policy.

Let nk
t denote the number of times arm k has been sampled

up to time t. Note that nk
t satisfies the following recursion:

nk
t =

{

nk
t−1 +1 if ut = k,

nk
t−1 if ut 6= k.

The t-th sample is then given by Zt = Y
ut

n
ut
t

.

The quality of an allocation policy is measured by its

expected regret, which is defined as follows

RT (φ) = T µk∗
θ∗

k∗
−

T

∑
t=1

E(Zt)

=
K

∑
j=1

(

µk∗
θ∗

k∗
−µk

θ∗
k

)

E(nk
T ). (1)

The MAB problem is to minimize the rate of growth of

RT (φ) as T → ∞, and furthermore to find functions fL(T )
and fU (T ) such that there exist constants CL,CU > 0, for

which

CL fL(T )≤ E{RT (φ)} ≤CU fU (T ).

If fL = fU = f , then we say that the regret is of order f .

III. MAIN RESULTS

In this paper, we use maximum likelihood estimates to

determine an allocation policy and evaluate its asymptotic

performance. The maximum likelihood estimate (MLE) has

the property of strong convergence in finite parameter spaces,

even when the observations are dependent over the time. We

start by defining ML estimators and their properties.

A. Preliminaries on Maximum Likelihood Estimation

Consider a process {Yn}∞
n=1 over a measurable space

(Ω,A ) and let An = σ(Y1, . . . ,Yn) be the Borel σ -field

generated by n observations. The probability law Pθ∗ of the

process {Yn}∞
n=1 belongs to a set {Pθ ,θ ∈ Θ}, where Θ is

a known finite set and θ ∗ ∈ Θ denotes the true parameter.

We assume that under each parameter θ ∈ Θ there exists a

density fθ corresponding to Pθ .

An estimator ϑ̂ = {ϑ̂1, ϑ̂2, . . .} is sequence of mappings

ϑ̂n : Ω → Θ that are An measurable. Given any sequence

{yn}∞
n=1 of observations, let {θ̂n}∞

n=1 be the sequence of

estimates corresponding to the estimator ϑ̂ . Then, ϑ̂ is called

the maximum likelihood estimator if

fθ̂n
(y1, . . . ,yn)≥ max

θ∈Θ
{ fθ (y1, . . . ,yn)} , Pθ∗a.s.

Moreover, ϑ̂ is called a (strongly) consistent estimator if

θ̂n 6= θ ∗ finitely often, Pθ∗ almost surely. For a consistent

estimator ϑ̂ , the lock-on time refers to least N such that for

all n > N, θ̂n = θ ∗, Pθ∗ almost surely.

Assume that the probability law Pθ , θ ∈ Θ, satisfies the

following assumptions:

Assumption 1: Let Pθ ,n denote the restriction of Pθ to the

σ -field An, n ≥ 0. Then, for all θ ∈ Θ, Pθ ,n is absolutely

continuous with respect to Pθ∗,n.

Assumption 2: For every θ ∈ Θ, let fθ ,n be the density

function associated with Pθ ,n. Define

fθ ,n(yn|yn−1) =
fθ ,n(y

n)

fθ ,n−1(yn−1)
, fθ ,0(y0|y−1) = fθ (y0),

and hθ ,n(yn|yn−1) =
fθ ,n(yn|yn−1)

fθ∗,n(yn|yn−1)
,

where yn , y1, . . . ,yn.

Then for every ε > 0, there exists α(ε)> 1, such that

Pθ∗
{

0 ≤ hθ̂n−1
(yn|yn−1)≤ α, for all n > |Θ|

}

< ε,

where θ̂n ∈ Θ.

Theorem 1 ([2], pp. 327–328): Suppose that Assum-

ptions 1 and 2 are satisfied, then maximum likelihood

estimates are consistent.

B. The Proposed Allocation Rule

Coming back to the MAB problem, assume that the

following assumption is satisfied:

Assumption 3: For every arm k, there is a consistent

estimator ϑ̂ k = {ϑ̂ k
1 , ϑ̂

k
2 , . . .}.

We observe that if {Pk
θ}, θ ∈ Θk, satisfies Assumptions

1 and 2, then the maximum likelihood estimator ϑ̂ k is

consistent and hence Assumption 3 is satisfied.



Given any sequence {yk
n}∞

n=1 of observations from arm k,

let {θ̂ k
n}∞

n=1 be the sequence of estimates corresponding to

the estimator ϑ̂ k.

Motivated by UCB1 in [3], we propose the following

allocation rule Φg. For ease of notation, let µ̂k
t = µk

θ̂ k

nk
t

.

Consider a set of index functions g =
{

gk
t,n

(

yk
1, . . . ,y

k
n

)}

with

gk
t,n

(

yk
1, . . . ,y

k
n

)

, µ̂k
t +

t/C

n
, (2)

where t ∈ Z>0, n ∈ {1, . . . , t}, C ∈ R and k ∈ {1, . . . ,K}.

If t < K then φ g samples from each process yk
n once,

otherwise it samples from the process indexed by ut =
max{gk

t,nk
t
; k ∈ {1, . . . ,K}}.

The main difference between the index in Φg and the index

in UCB1 [2] is that the index there depends upon the sample

mean, while the index in Φg depends upon the mean of the

maximum likelihood estimate or, in general, any consistent

estimator. This modification makes Φg applicable to more

general MAB problems in which the reward process for each

machine is time dependent.

Lemma 1: For each machine k ∈ {1,2, . . . ,K},

lim
t→∞

nk
t = ∞ a.s. Pk

θ∗
k
.

The proof in presented in Appendix I.

Theorem 2: If Assumption 3 holds, then for each k ∈
{1, . . . ,K}, the index function gk given in (2) is an Upper

Confidence Bound (UCB), i.e, it satisfies the following

conditions ([4]):

1) gt,n is non-decreasing in t ≥ n, for each fixed n ∈Z>0 .

2) Let yk
1,y

k
2, . . . ,y

k
n be a sequence of observations from

machine k. Then, for any z < µ̂k
t ,

Pθ∗
k

{

gt,n

(

yk
1, . . . ,y

k
n

)

< z, for some n ≤ t
}

= o(t−1)

The proof in presented in Appendix II.

C. Performance of Φg

Assumption 4: (Summable Wrong and Corrected Condi-

tion (SWAC)) For all machines k ∈ {1, . . . ,K}, the sequence

of estimates θ̂ k
1 , . . . , θ̂

k
n , . . . satisfies the following condition:

P
k
θ∗

k
(θ̂ k

n−1 6= θ ∗
k , θ̂

k
m = θ ∗

k , ∀m ≥ n)<
C

n3+β
, (3)

for some C ∈ R>0, β ∈ R>0, and for all n ∈ Z>0.

Under Assumption 4 it becomes geometrically more dif-

ficult to change a false decision to a true one over time. We

note that Assumption 4 does not imply consistency.

However, when consistency holds, Assumption 4 implies

the 2+α moment, and hence the first and second moments,

of the random lock-on instant N are finite for 0 < α < β ,

where β appears in Assumption 4.

Lemma 2: Let Nk be the lock-on time for estimator θ̂ k.

Then, under Assumption 4,

E{N2+α
k }< ∞, ∀k ∈ {1, . . . ,K}, 0 < α < β , (4)

where β appears in Assumption 4.

Proof: Under Assumption 4 the lock on time Nk

satisfies

EN
(2+α)
k =

∞

∑
n=1

n(2+α)
P(Nk = n)

=
∞

∑
n=1

n(2+α)
P(θ̂ k

n−1 6= θ ∗
k , θ̂

k
m = θ ∗

k , ∀m ≥ n)

<
∞

∑
n=1

n(2+α) C

n3+β
< ∞, 0 < α < β .

Theorem 3: If Assumptions 3 and 4 hold, then the regret

of φ g satisfies RT (φ
g) = o(T 1+δ ) for some δ > 0.

The proof in presented in Appendix III.

IV. MAB PROBLEMS FOR LINEAR SYSTEMS

A. An MAB Problem for ARMA Processes

Consider a bandit system with reward process generated

by the following ARMA (or equivalently linear state space)

system:

S :
xk

n+1 = λkxk
n +wk

n

yk
n = xk

n

∀n ∈ Z≥0 (5)

where xk
n,y

k
n,w

k
n ∈ R for n ∈ Z≥0, and wk is an i.i.d.

N (0,σk
2) process independent of xk

0. For simplicity assume

that there are only two machines, i.e. k ∈ {1,2}, and that

the parameter space of the system contains two alternatives:

Θk = {θ ∗
k ,θk}; θk , (λk,σk). In addition, assume that (5)

is in steady state; in steady state, the system must be

asymptotically stable, that is, |λ |< 1.

At each step t the player chooses to observe a sample from

machine k ∈ {1,2} and pays a cost equal to the squared min-

imum one step prediction error of the next observation yk

nk
t

given the past observations yk
1, . . . ,y

k

nk
t −1

, where nk
t denotes

the local time of machine k. Denote this cost at time t as υk
t .

For this example, we define the expected regret as follows:

RT (φ) =−
T

∑
i=1

( min
k∈{1,2}

Eυk

nk
i

2 −Eυ
ui

n
ui
i

2
), (6)

and we recall that the player aims to minimize the rate of

growth of the expected regret RT (φ) as T → ∞.

The problem under consideration corresponds to fairly

realistic cases where one wants to learn the dynamics of

both machines (by identifying the true unknown parameter

of each machine) in order to hit a target (e.g. a physical or

financial target) based on the knowledge so far gained.

Remark 1: We note that the MAB model as described

above does not fit with the model described in Section I.

This is because in the MAB model described in Section I,

the reward yielded from machine k ∈ {1, . . . ,K} at instant t

depends only on the observation yk

nk
t

made at the same instant,

while in the MAB model described above, the reward yielded

from machine k (υk

nk
t
) depends on the past observations

yk
1, . . . ,y

k

nk
t −1

as well.

However, we can make the latter model fit with the former

model by using a simple transformation of the observations.



Specifically, we can assume that whenever an agent plays

machine k, it observes a vector (yk

nk
t
,υk

nk
t
). By using this

transformation, the scenario described earlier remains valid

in terms of estimation. This is because υk

nk
t

is a function

of the past and present observation (yk
1, . . . ,y

k

nk
t
), and thus

employing υk

nk
t

does not alter the selection of the ML

estimator for machine k.

In the sequel, we examine the behaviour of Φg in such a

system. To do so, we first need to verify Assumptions 1, 2,

and 4 for each machine separately. These can be translated

in terms of properties of the innovations processes. So we

first start with a recap of some standard results for ARMA

processes.

B. Preliminary Results on ARMA Processes

Consider the reward process of each machine described

by (5). The state process xn, and hence the output process

yn, shall be assumed to be zero mean stationary under both

parametrizations and consequently it is assumed that, |λ ∗|<
1 and |λ |< 1.

The negative logarithmic likelihood function of the reward

process can be decomposed in terms of the prediction error

process yi −E(yi|yi−i) = yi − yi|i−1 as follows:

−log f (yn;λ )=
n

2
log2π+

1

2
log(

σ2n

1−λ 2
)+

1

2
y2

1(
σ2

1−λ 2
)−1

+
1

2

n

∑
i=2

(yi − yi|i−1)
2σ−2 (7)

where yi|i−1 , E(yi|yi−i) = λyi−1 is the optimal non-linear

least squares estimate of yi given the past observations

y1, . . . ,yi−1, which is generated by the Kalman filter.

The prediction error process under the true parameter θ ∗

is:

νn = yn −E{yn|yn−1}= (λ ∗yn−1 +wn−1)−λ ∗yn−1

= wn−1, wn−1 ∼ N (0,σ∗2).

The prediction error process under the incorrect parameter

θ is:

en = yn −E{yn|yn−1}= (λ ∗−λ )yn−1 +wn−1

= wn−1 +(λ ∗−λ )
n

∑
j=1

λ ∗ j−1
wn−1− j

= νn +(λ ∗−λ )
n

∑
j=1

λ ∗ j−1νn− j,

where the fact that under both hypotheses y1|0 = 0 is used to

obtain the third line.

The prediction error process of the system under the true

parameter θ ∗ is called the innovations process of yn; in

general, it is an independent process (see [2]) and in the

case under consideration it is i.i.d.. On the other hand, the

prediction error process of the system under the incorrect

parameter θ is in general a dependent process is called the

pseudo-innovations process. Note that E(ν2) = σ∗2 <E(e2).
We now consider in turn the validity in the current case

of each of the general assumptions introduced earlier.

1) Assumption 1: Assuming that θ ∗ 6= θ for each linear

system, Assumption 1 follows in each case.

2) Assumption 2: We consider each machine separately.

To verify Assumption 2, one needs to show that for all ε > 0,

there exists α(ε)> 1 such that,

Pθ∗

{

0 ≤ f (yn|yn−1;θ)

f (yn|yn−1;θ ∗)
< α(ε),∀n > |Θ|

}

< ε. (8)

But

f (yn|yn−1;θ)

f (yn|yn−1;θ ∗)
< α

=⇒ 1√
2πσ

exp(−1

2

e2
n

σ2
)< α

1√
2πσ∗ exp(−1

2

ν2
n

σ∗2
). (9)

Taking the logarithm in both sides of (9), one has

log
σ∗2

σ2
−logα <

1

2

[

(νn +(λ ∗−λ )∑
n
j=1 λ ∗ j−1νn− j)

2

σ2
− ν2

n

σ∗2

]

.

So substituting in (8) yields the following expression for

Assumption 2:

Pθ∗

{

log
σ∗2

σ2
− logα <

1

2

[

(νn +(λ ∗−λ )∑
n
j=1 λ ∗ j−1νn− j)

2

σ2
− ν2

n

σ∗2

]

,

∀n > |Θ|
}

< ε. (10)

The event inside the probability measure in (10) is in gen-

eral hard to evaluate since it involves the sum of squared past

innovations which are Gaussian random variables. Thus, this

summation follows some generalized form of χ2-distribution

whose close form expression is not known. This leads

us to adopt the following conjecture which is seen to be

very plausible when the Strong Law of Large Numbers

and the Law of the Iterated Logarthim are applied to the

sums appearing in the expansion of the quadratic expression

in (10):

Conjecture 1: For the set of likelihood functions specified

by the parameter set Θ, Assumption 2 is satisfied.

3) Assumption 4: We consider each machine separately.

Consider the event {θ̂n 6= θ ∗} for which we have

{θ̂n 6= θ ∗}= { f (yn;θ)> f (yn;θ ∗)}
= {− log f (yn;θ)<− log f (yn;θ ∗)} (11)

Using the decomposition property of the likelihood function

[2] in terms of the innovations process we have

{θ̂n 6= θ ∗}=
{

An <
n

∑
i=2

ν2
i

σ∗2

}

(12)

where

An , n log
( σ2

σ∗2

)

+ log
(1−λ ∗2

1−λ 2

)

+ y2
1

( σ2

1−λ 2

)−1

− y2
1

( σ∗2

1−λ ∗2

)−1

+
n

∑
i=2

e2
i

σ2
. (13)



Consider also the event {θ̂n+1 = θ ∗} for which, by similar

reasoning to that yielding (12), we have

{θ̂n+1 = θ ∗}=
{

An+1 ≥
n+1

∑
i=2

ν2
i

σ∗2

}

, (14)

which we shall denote by {An+1 ≥Vn+1}.

To analyse the joint event En , {θ̂n 6= θ ∗, θ̂m = θ ∗, ∀m ≥
n}, we substitute (12) into (14) to see that it is equivalent to

the event Fn given in the following expression:

Fn = {θ̂n 6= θ ∗}∩{An+1 ≥Vn+1}∩{An+2 ≥Vn+2}∩ . . .

=
{ n

∑
i=2

ν2
i

σ∗2
> An

}

∩{An+1 ≥Vn+1}∩{An+2 ≥Vn+2}∩ . . .

(15)

As for the event inside the probability measure in (10),

the event described by (15) involves a linear combination of

χ2 random variables whose probability density function is

not known. This leads us to adopt the following conjecture

which, again, is very plausible when considered in terms

of the Strong Law of Large Numbers and the Law of the

Iterated Logarthim.

Conjecture 2: There exists a a, β ∈ R>0 such that for all

n ∈ Z>0,

P{Fn}<
a

n3+β
, (16)

and hence Assumption 4 is satisfied.

C. The regret function

Based on the preliminary results on the ARMA processes

introduced above, the expected regret function of the MAB

system S given by (6) can be restated as follows:

RT (φ) =−
T

∑
i=1

( min
j∈{1,2}

Eν j2 −Eν
ui

n
ui
T

2
)

=−
2

∑
k=1

( min
j∈{1,2}

σ∗
j

2 −σ∗
k

2)E(nk
T ) (17)

where ν
ui

n
ui
T

2
is the squared innovations process of machine

ui ∈{1,2} played at instant i and σ∗
j

2 denotes the innovations

process variance of machine k ∈ {1,2}.

D. Index policies

The index functions in (2) can be expressed as

gk

T,nk
T

=
2

σ̂2
k

+
T

Cnk
T

, k ∈ {1,2} (18)

where σ̂2
k is the ML estimate of the innovations process

variance of machine k.

For the computation of σ̂ k
T at stage T , we compute the

maximized likelihood ratio (MLR) given by

lk(T ) = max
ψk∈Θk

fψk(yk
1, . . . ,y

k
T )

fθ k
0
(yk

1, . . . ,y
k
T )

. (19)

where θ k
0 in (19) is arbitrary and the ML estimate is given

by the value of the parameter ψk giving the greatest value

to the ratio in (19).

TABLE I: The parameter values of the 3 systems consid-

ered for simulations. The simulations results are shown in

Fig. 1,2,3.

System 1 (S1)

Θ1 =
{

θ 1
1 = (0.145,8),θ 2

1 = (0.09,10)
}

θ ∗
1 = θ 1

1

Θ2 =
{

θ 1
2 = (0.2,5),θ 2

2 = (0.19,15)
}

θ ∗
2 = θ 2

2

System 2 (S2)

Θ1 =
{

θ 1
1 = (0.145,8),θ 2

1 = (0.09,10)
}

θ ∗
1 = θ 1

1

Θ2 =
{

θ 1
2 = (0.2,5),θ 2

2 = (0.19,8.1)
}

θ ∗
2 = θ 2

2

System 3 (S3)

Θ1 =
{

θ 1
1 = (0.145,8.09),θ 2

1 = (0.09,8.1)
}

θ ∗
1 = θ 1

1

Θ2 =
{

θ 1
2 = (0.2,8.11),θ 2

2 = (0.19,8.1)
}

θ ∗
2 = θ 2

2

E. Simulation Results

Consider the MAB problem with ARMA reward processes

and the parameter values given in Table I, where Θk cor-

responds to the parameter space of the k-th machine and

k ∈ {1,2}:

For each of these systems, Figures 1, 2, and 3 show the

sample regret for different realizations as well as the sample

mean for Systems (S1)–(S3) and for different values of the

parameter C.

When C is small, the switching between the arms takes

place with a higher frequency. Consequently, more time is

spent in exploration, and the regret increases at a larger rate.

When C is large, the switching between arms takes place

at a lower frequency. Consequently, more time is spent in

exploitation, and the regret increases at a slower rate. Note,

however, that the lock-on to the true parameter is also slower

when C is larger. This is clearly illustrated in Systems (S2)

and (S3), where the parameters were chosen close to one

another to make estimation harder. Figures 2 and 3 show

that for C = 10000 there are some sample paths for which

the lock-on to the true parameter has not taken place until

the end of the simulation.

It should be noted that although the algorithm locks-on

to the true arm in finite expected time, the regret keeps

on increasing because of the T/CnT term in our index

rule. In UCB1-type algorithms, this index if of the form

µ̂ + logT/CnT , and hence the regret increases as O(logT ).

V. CONCLUSIONS

In this paper, we consider the MAB problem with time-

dependent rewards that depend on single parameters which

lie in a known, finite parameter space. We propose an

allocation rule, Φg, which employs a set of functions that

depend on consistent estimators of the unknown parameters.

In particular, we consider the Maximum Likelihood Estima-

tors on finite parameter sets which under Assumptions 1-2

are known to be consistent [1]. Further given Assumptions

3-4, we show that Φg is of index type and RT (Φ
g) ∈ o(T δ )

for some δ > 1. Although this result is suboptimal compared

to other results in the literature for MAB problems with i.i.d.
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Fig. 1: Simulation of 10000 realizations for System 1 for 3 values of C. Left panel: C = 100. Middle panel: C = 1000. Right

panel: C = 10000. The regret resulted from each realizition is plotted in blue, and the regret over all realizations in red. The

parametres specifying System 1 are given in Table I.
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Fig. 2: Simulation of 10000 realizations for System 2 for 3 values of C. Left panel: C = 100. Middle panel: C = 1000. Right

panel: C = 10000. The regret resulted from each realizition is plotted in blue, and the regret over all realizations in red. The

parametres specifying System 2 are given in Table I.
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Fig. 3: Simulation of 10000 realizations for System 3 for 3 values of C. Left panel: C = 1000. Middle panel: C = 10000. Right

panel: C = 100000. The cost function resulted from each realizition is plotted in blue, and the regret over all realizations in

red. The parametres specifying System 3 are given in Table I.

rewards, the proposed policy Φg is more flexible because it

can be applied to a more general class of MAB problems,

including those with time-dependent rewards.
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APPENDIX I

Proof: [Lemma 1] We prove th result by contradiction.

Assume that there is ω ∈ Ω and a subset S ⊂ K =
{1, . . . ,K} of machines which are chosen finitely many times,

while machines in K \S are chosen infinitely many times.

That means

∀k ∈ S , ∃qk > 0 s.t. lim
t→∞

nk
t = qk < ∞ (20)

and

∀ j ∈ K \S , lim
t→∞

n
j
t = ∞. (21)

By the assumption that each machine k ∈ S had been

played finitely many times, it is implied that for all k ∈ S

there exists t ′ > 1 such that for all t > t ′

µk

θ̂ k

nk
t

+
t/C

nk
t

≤ max
j∈K \S

{

µ
j

θ̂
j

n
j
t

+
t/C

n
j
T

}

=⇒ min
θk∈Θk

{

µk
θk

}

+
t/C

nk
t

≤ max
j∈K \S

{

max
θ j∈Θ j

{

µ
j

θ j

}

+
t/C

n
j
t

}

=⇒ γk −Γ

t/C
+

1

nk
t

≤ max
j∈K \S

{

1

n
j
t

}

where γk = min
θk∈Θk

{

µk
θk

}

and Γ = max
j∈K \S

{

max
θ j∈Θ j

{

µ
j

θ j

}

}

.

But

lim
t→∞

{γk −Γ

t/C
+

1

nk
t

} ≤ lim
t→∞

max
j∈K \S

{

1

n
j
t

}

=⇒ 1

qk

≤ 0

which leads to a contradiction since qk was assumed to be a

finite positive.

APPENDIX II

Proof: [Theorem 2] For any k ∈ {1, . . . ,K}, and any

fixed n < t, the estimate µ̂k
t is constant. That means gk is a

linear function in t, which proves condition 1.

Moreover, by Lemma 1 and under Assumption 3 we have

that for every k ∈ {1, . . . ,K}, for all ω ∈ Ωk
o ⊆ Ω where Ωk

o

is such that P
Ωk

o

θ∗
k
= 1, and all n > Nk

θ̂ k
n = θ ∗

k (22)

In addition, define

Bk
n , {ω : Nk < n} ,

Ak
t,n ,

{

ω : gk
t,n(y

k
1, . . . ,y

k
n)< z

}

for any z < µk
θ∗

k
and

Ak
t ,

{

ω : g
j
t,n(y

k
1, . . . ,y

k
n)< z for some n ≤ t

}

=
t
⋃

n=1

Ak
t,n.

Then,

Pθ∗
k

(

Ak
t,n | Bk

n

)

= 0 (23)

In addition, let t∗k =

⌊

t/C

(

µk
θ∗

k
− min

θk∈Θk

µk
θk

)⌋

where ⌊•⌋
denotes the floor function. Then,

Pθ∗
k

(

Ak
t,n

)

= 0, ∀n < t∗k . (24)

Thereafter, consider

tP(Ak
t ) = TP

(

t
⋃

i=1

Ak
t,i

)

≤ t
t

∑
i=1

P(Ak
t,i) (by the union bound)

≤ t

t

∑
i=t∗+1

P(Ak
t,i) (by eqn. (24))

(25)

Using the law of total probability we have

t
t

∑
i=t∗

k
+1

P(Ak
t,i)≤ t

t

∑
i=t∗+1

P(Ak
t,i|Bk

i )P(B
k
i )+P(Ak

t,i|Bk
i

∁
)P(Bk

i

∁
)

= t

t

∑
i=t∗+1

P(Ak
t,i|Bk

i

∁
)P(Bk

i

∁
) (by eqn. (23))

(26)

Substituting (26) into (25) we have

tP(Ak
t )≤ t

t

∑
i=t∗+1

P(Ak
t,i|Bk

i

∁
)P(Bk

i

∁
)

≤ t

t

∑
i=t∗+1

P(Bk
i

∁
)

≤ t

t

∑
i=t∗+1

E(Nk(ω)2+α)

n2+α
(by Markov ineq.)

≤ tE(Nk(ω)2+α)

t
∫

i=t∗+1

1

n2+α
dn

=
tE(Nk(ω)2+α)

1+α
((t∗+1)−(1+α)− t−(1+α)),

for some α > 0. (27)

Taking the limit as t → ∞ and under Assumption 3 we have

lim
t→∞

[

tE(N2+α
k )

1+α

(

(t∗k +1)−(1+α)− t−(1+α)
)

]

= 0 (28)



which shows that part 2 holds, and completes the proof of

Theorem 2.

APPENDIX III

Proof: [Theorem 3] Consider the following upper bound

of the local time of each machine k ∈ {1, . . . ,K} [4]:

nk
T ≤ 1+ sup{1 ≤ n ≤ T : gk

T,n(y
k
1, . . . ,y

k
n ≥ µk∗

θ∗
k
− ε)}+

t

∑
i=1

1An
i

(29)

Then,

E{nk
T}

T 1+δ
≤

E{1}+E{sup{1 ≤ n ≤ T : gk
T,n(y

k
1, . . . ,y

k
n ≥ µk∗

θ∗
k
− ε)}}+E{

T

∑
i=1

1An
i
}}

T 1+δ

Taking the limsup as T → ∞ and the infimum over ε > 0

in both sides, and by condition 2 in Theorem 2, we end up

with

limsup
T→∞

E{nk
T}

T 1+δ
≤ inf

ε>0
limsup

T→∞

E{sup{1 ≤ n ≤ T : gk
T,n(y

k
1, . . . ,y

k
n ≥ µk∗

θ∗
k
− ε)}}

T 1+δ
.

Then, an expression involving the expected regret is given

by

limsup
T→∞

RT (Φ
g)

T 1+δ
= ∑

j<k∗

(µk∗
θ∗

k∗
−µ

j

θ∗
j
)

L(P j

θ∗
j
,µk∗

θ∗
k∗
)
, ∀δ > 0. (30)

where, for all j < k∗

1

L(P j

θ∗
j
,µk∗

ϑ∗
k∗
)
, inf

ε>0
limsup

T→∞

Eθ∗
k

{

sup{1 ≤ nk
T ≤ T : gk(yk

1, . . . ,y
k

nk
T

)≥ µk∗
θ∗

k∗
)− ε}

}

T 1+δ

(31)

Evaluating this result under the proposed index policy Φg

we have that

1

L(P j

θ∗
j
,µk∗

ϑ∗
k∗
)
, inf

ε>0
limsup

T→∞

Eθ∗
k

{

sup{1 ≤ nk
T ≤ T : g j(yk

1, . . . ,y
k

nk
T

)≥ µk∗
θ∗

k∗
)− ε}

}

T 1+δ

≤ inf
ε>0

limsup
T→∞

T

T 1+δ
= 0 ∀δ > 0.

But this means

limsup
T→∞

RT (Φ
g)

T 1+δ
= 0 (32)

which is equivalent to RT (ω,Φg) ∈ o(T 1+δ ).


