
Multi-Armed Bandits,

Gittins Index, and Its

Calculation

Jhelum Chakravorty and Aditya Mahajan

24

24.1 Introduction

Multi-armed bandit is a colorful term that

refers to the di lemma faced by a gambler

playing in a casino with multiple slot ma-

chines (which were colloquially called one-

armed bandits). W h a t strategy should a

gambler use to pick the machine to play

next? It is the one for which the poste-

rior mean of winning is the highest and

thereby maximizes current expected re-

ward, or the one for which the posterior

variance of winning is the highest, and has

the potential to maximize the future ex-

pected reward. S imi lar exploration vs ex-

ploitation trade-offs arise in various appli -

cation domains including cl inical tr ials [5],

stochastic scheduling [25], sensor manage-

ment [33], and economics [4].

C l i n i c a l tr ials fit natural ly into the

framework of mult i -armed bandits and

have been a motivation for their study

since the early work of Thompson [31].

Broadly speaking, there are two ap-

proaches to mult i -armed bandits. T h e

first, following Bel lman [2], aims to maxi -

mize the expected total discounted reward

over an infinite horizon. T h e second, fol-

lowing Robbins [27], aims to minimize the

rate of regret for the expected total reward

over a finite horizon. I n some of the litera-

ture, the first setup is called geometric dis-

counting while the second is called uniform

discounting. For a large time, the mult i -

armed bandit problem, in both formula-

tions, was considered unsolvable unti l the

pioneering work of G i t t ins and Jones [13]

for the discounted setup and that of L a i

and Robbins [22] for the regret setup char-

acterized the nature of the optimal strat-

egy.

I n this chapter, we restrict our atten-

tion to the discounted setup; we refer the

reader to a recent survey by Bubeck and

Cesa-Bianchi [9] and references therein for

the regret setup and to Kuleshov and Pre-

cup [20], who discuss the regret setup in

the context of cl inical trials.

24.2 Mathematical
Formulation of
Multi-Armed Bandits

Mult i -armed bandit (M A B) is a sequential

decision problem in which, at each time,

416

Methods and Applications of Statistics in Clinical Trials: Planning,

Analysis, and Inferential Methods. Edited by N. Balakrishnan.

© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

441 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

a player must play one among n available

bandit process. In the simplest setup, a

bandit process is a controlled Markov pro-

cess. The player has two controls: ei-

ther play the process or not. If the player

chooses to play the bandit process 2, i =

1 , . . . , n, the state of the bandit process i

evolves in a Markovian manner while the

state of all other processes remains frozen

(i.e., it does not change). Such a ban-

dit process is called a Markovian bandit

process. More sophisticated setups assume

that when a bandit processes is played,

its state evolves according to an arbitrary

stochastic process. To focus on the key

conceptual ideas, we restrict our attention

to Markovian bandit processes. For more

general bandit processes, the description of

the solution concept and its computation

are more involved.

Formally, let { X l } ^ denote the bandit

process. The state X\ of the bandit pro-

cess i , i = l , . . . , n , takes values in an arbi-

trary space X%
. For simplicity, we assume

in most of the discussion in this chapter

that X
% is finite or countable.

Let Ut = (u l , . . . , u t) denote the deci-

sion made by the player at time The

component u\ is binary valued and denotes

whether the player chooses to play the ban-

dit process i (u\ = 1) or not {u\ = 0). Since

the player may only choose to play one

bandit process at each time, u t must have

only one nonzero component, or equiva-

lent^
n

= vt.
i=1

Let U £ {0, l } n denote all vectors with

this property. The collection { K t =

{ X l , . . . , X t
n) } £ 0 evolves as follows: Vz =

1, ..., n

4 = (f (x i w ;) J if<4 = 1,

t + 1 \XL if u\ — 0,

where {W? i = 1 , . . . ,n, are mutually

independent i.i.d. processes. Thus, when

u\ = 1, X\ evolves in a Markovian manner;

otherwise it remains frozen.

When bandit process i is played, it

yields a reward r l (X l) and all other pro-

cesses yield no reward. The objective of

a player is to choose a decision strategy

9 = {9t}%Lo> where gt : [JlLi x i so as

to maximize the expected total discounted

reward

oo n

t—0 i=l

where xo = (x j , . . . , Xq) is the initial start-

ing state of all bandit processes and (3 €

(0,1) is the discount factor.

24.2-1 An Example

Consider an adaptive clinical trial with n

treatment options. When the tth patient

comes for treatment, she may be prescribed

any one of the n available options based on

the results of the previous trials. The se-

quence of success and failure of each treat-

ment is an Bernoulli process with an un-

known success probability s*, i = 1, ...,

n. The objective is to design an adaptive

strategy that maximizes the expected total

discounted successful treatments.

The above adaptive clinical trial may

be viewed as a M A B problem as follows.

Suppose the prior distribution of sl has

a beta distribution that is independent

across treatments. Then the posterior dis-

tribution of 5% which is calculated using

Bayes' rule, is also a beta distribution,

say Beta(pJ,gJ) at time t. Therefore, each

treatment may be modeled as a Marko-

vian bandit process where the state X\ is

(pbQt)i the state update function / cor-

responds to Bayes update of the poste-

rior distribution, and the reward function

rl
(X}) = Pt/(Pt + Qt) captures the proba-

bility of success.

442 Multi-Armed Bandits, Gittins Index, a n d I t s Calculation J^ll

24.2.2 Solution Concept and lows:

the Gittins Index

One possible solution concept for the M A B

problem is to set it up as a Markov deci-

sion process (MDP) and use Markov de-

cision theory [26] to solve it. However,

such an approach does not scale well with

the number of bandit processes because of

the curse of dimensionality. To see this,

assume that the state space X
1 of each

bandit process is a finite set with ra el-

ements. Then the state space of the re-

sultant MDP, which is the space of real-

izations of Xt , has size m n . The solu-

tion complexity of solving a M D P is pro-

portional to the size of the state space.

Hence the complexity of solving M A B us-

ing Markov decision theory increases expo-

nentially with the number of bandit pro-

cesses. A key breakthrough for the M A B

problem was provided by Gittins and Jones

[13] and Gittins [15], who showed that in-

stead of solving the n-dimensional M D P

with state-space n l L i > a n optimal solu-

tion is obtained by solving n 1-dimensional

optimization problems: for each bandit i,

i = 1, . . . , n, and for each state x
l
 € X

1
,

compute

E

v
l
(x

l
) — max -

v ' T> o

£ P r W) L
t=0

Xio = xi

E
t = 0

XK

(!)
where r is a {cr(X[,...,X\)}

<
£Ll measur-

able stopping time. The function v
l
(x

l
)

is called Gittins index of bandit process i

at state x
l
. The optimal r in (1), which

is called the optimal stopping time at x\

is given by the hitting time T(S(x
1
)) of

a stopping set S(x
l
) C X\ t!hat is, the

first time the bandit process enters the set

S(x
l
). Algorithms to compute the Gittins

index of a bandit process are presented in

Section 24.3.

Gittins and Jones [13] and Gittins [15]

characterized the optimal strategy as fol-

� At each time, play the arm with the

highest Gittins index.

Thus, to implement the optimal strat-

egy, compute and store the Gittins index

v
l
(x

%
) of all states x

l
 € X

1 of all bandit

processes i, i = 1, ..., n. Off-line algo-

rithms that compute the Gittins index of

all states of a bandit process are presented

in Section 24.3.

An equivalent interpretation of the Git-

tins index strategy is the following:

� Pick the arm with the highest Gittins

index and play it until its optimal stop-

ping time (or equivalently, until it en-

ters the corresponding stopping set)

and repeat.

Thus, an alternative way to implement

the optimal strategy is to compute the Git-

tins index v
l
(x\) and the corresponding

stopping time [or equivalently, the corre-

sponding stopping set S(x
1
)] for the cur-

rent state x\ of all bandit processes i, i = 1,

..., n. On-line algorithms that compute

the Gittins index and the corresponding

stopping set for an arbitrary state of a ban-

dit process are presented in Section 24.4.

Off-line implementation is simpler and

more convenient for bandit processes with

finite and moderately sized state space.

On-line implementation becomes more

convenient for bandit processes with large

or infinite state space.

24.2.3 Salient Features of the

Model

As explained by Gittins [15], M A B prob-

lems admit a simpler solution than gen-

eral multistage decision problems because

they can be optimally solved with forward

induction. In general, forward induction

is not optimal and one needs to resort

to backward induction to find the optimal

strategy. Forward induction is optimal for

443 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

M A B setup because it has the following

features:

1. The player plays only one bandit pro-

cess, and that process evolves in an

uncontrolled manner.

2. The processes that are not played are

frozen.

3. The current reward depends only on

the current state of the process that

is played and is not influenced by the

state of the remaining processes and

the history of previous plays.

Because the above features, decisions

made at each stage are not irrevocable and

hence forward induction is optimal. On

the basis of the above insight, Gittins [15]

proved the optimality of the index strat-

egy, using an interchange argument. Since

then, various other proofs of the Gittins in-

dex strategy have been proposed (see [14]

for a detailed summary).

Several variations of M A B problems

have been considered in the literature.

These variations remove some of the above

features, and, as such, index strategies are

not necessarily optimal for these variations.

We refer the reader to the survey by Ma-

hajan and Teneketzis [23] and references

therein for details on the variations of the

M A B problem.

24.3 Off-Line Algorithms for
Computing Gittins Index

Since the Gittins index of a bandit process

depends just on that process, we drop the

label i and denote the bandit process by

o-

Off-line algorithms use the following

property of the Gittins index. The Gittins

index v : X —» E induces a total order >z

on X that is given by

Using this total order, for any state a e X)

the state space X may be split into two sets

C(a) = {b € X : b y a},

5(a) = {b e X : a y b}.

These sets are, respectively, called the con-

tinuation set and the stopping set. The

rationale behind the terminology is that if

we start playing a bandit process in state a,

then it is optimal to continue playing the

bandit process in all states C(a) because

for any b € C(a), u(b) > v(a). Thus, the

stopping time that corresponds to starting

the bandit process in state a is the hitting

time T(5(a)) of set 5(a), that is, the first

time the bandit process enters set 5(a).

Using this characterization, the expression

for Gittins index (1) simplifies to

E

u(a) = max -
S(a)CX

r T(S(a))

£ Pr(Xt)
t=o

Xq = a

Va, b <E X , ahb v(a) > v(b).

rT(S(a))

E jr P Xo = a
L t—0

(2)
where T(5(a)) = inf{* > 0 : Xt G 5(a)}

is the hitting time of set 5(a). The off-line

algorithms use this simplified expression to

compute the Gittins index.

For ease of exposition, assume that

Xt takes values in a finite space X =

{ 1 , . . . , ra}. Most of the algorithms extend

to countable state spaces under appropri-

ate conditions. Denote the m x m tran-

sition probability matrix corresponding to

the Markovian update of the bandit pro-

cess by P = [Pa,b] and represent the re-

ward function using a ra x 1 vector r, i.e.

r a = r (a) . Furthermore, let 1 be the ra x 1

vector of ones, 0 m x i be the ra x 1 vector

of zeros, I be the m x m identity matrix,

and 0 mxm be the mxm matrix of zeros.

420 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

24.3.1 Largest-Remaining-

Index Algorithm

(Varaiya, Walrand, and

Buyukkoc)

Varaiya, Walrand, and Buyukkoc [32] pre-

sented an algorithm to compute the Git-

tins index, which we refer to as the largest-

remaining-index algorithm. The key idea

behind this algorithm is to identify the

states in X according to the decreasing or-

der

where (ai , . . . , a m) is a permutation of

(1, . . . , ra).

The algorithm proceeds as follows:

Ini t ia l izat ion: The first step of the al-

gorithm is to identify the state a\ with the

highest Gittins index. Since a\ has the

highest Gittins index, S(a i) = X. Sub-

stituting this in (2), we get that v(a\) =

r(a i) = r Q l . Then, choose

a\ = arg max ra

where ties are broken arbitrarily. The cor-

responding Gittins index is

v{qli) = rai.

Recursion step: After the states ai,
. . . , ah-1 have been identified, the next

step is to identify the state a k with

the kth largest Gittins index. Even

though ak is not known, we know that

C(ak) = {otu � � �, afe-i} and S(ak) = X \

{ a i , . . . , a k - i } . Substituting this in (2),

we can compute v(ak) as follows. Define

the ra x ra matrix by Va, b G X,

qW = f p a,6 , if 6 € C(afc),

a '6 [0, otherwise;

and define the ra x 1 vectors:

d(*> = [I —

(3)

(4)

Then, choose

a k = arg max

where ties are broken arbitrarily. The cor-

responding Gittins index is

d(*)
b w

Computational complexity: The per-
formance bottleneck of this algorithm is

the two systems of the linear equations (4)

that need to be solved at each step. At step

fc, each system effectively has k variables,

so solving each requires (2/3)fc3 + 0(k
2
)

arithmetic operations. Thus, overall this

algorithm requires

m

2j2[lk
3
 + 0(k

2
)] ^ i r a

4
 + 0 (m

3
)

k=l

arithmetic operations. This algorithm has

the worst computational complexity of all

the algorithms presented.

E x a m p l e 24 .3 .1 Consider a bandit pro-

cess with state space X = {1 ,2,3,4}, re-

ward vector r = [16 19 30 4]T, and

probability transition matrix

0.1 0 0 .8 0.1

0.5 0 0 .1 0.4

0.2 0.6 0 0.2

0 0.8 0 0.2

Let the discount factor be f3 = 0.75.

Using the largest-remaining-index algo-

rithm, the Gittins index for this bandit

process is calculated as follows:

Init ia l izat ion: Start by identifying the

state with the highest Gittins index:

ai = arg max ra = 3;
adzX

v{ol\) = r3 = 30.

445 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

R e c u r s i o n s t e p :

1. S t e p k = 2: Although ct2 is not

known, we know that C(a2) = {3}

and S(a2) = { 1 ,2 ,4} . Using (3) and

(4) we get

o(2)
0 0 0 . 8 0
0 0 0.10
00 0 0
00 0 0

"34 " �1.6
 _

21.25
30
4

, b<
2
> = 1.075

1
1

Hence,

3.

d (2)

a 2 = arg max = 1;

v(ol2) =
d (2)

"a2

: 21.25.

2. S t e p k = 3: Although <23 is not

known, we know that C(a3) = { 1 , 3 }

and S (a 3) = {2,4}. Using (3) and (4)

we get

o
(3)

 -

0 . 1 0 0 . 8 0 1
0.5 0 0.10
0.20 0 0
0 0 0 0

d<
3
> =

Hence,

"40.719" "1.916"
36.977 , b<

3
> = 1.815

36.108 , b<
3
> = 1.288

4 1

is(a3) =

d(
a

3)

arg max - j r r
a€{2,4} b (3)

i(3)
d«3_

kp)
20.372.

S t e p fc = 4: As before, although c*4

is not known, we know that C(a4) =

{ 1 , 2 , 3 } and S(a4) = {4}. As in the

previous steps, using (3) and (4) we

get

o(4)
0.1 0 0.80
0.5 0 0.10
0.2 0.6 0 0

0 0.8 0 0

Since S(a4) =

ment, we have

"54.929" " 2.613"
43.95 , b<

4
> = 2.157

58.017 , b<
4
> = 2.363

.30.371. 2.295

{4} has only one ele-

04 = 4, and v(a±)
d (4)

Hi)
Wa4

13.236.

Thus, the vector of the Gittins index of this

bandit process is

v =

21.25
20.372
30
13.236

24.3.2 State-Elimination
Algorithm (Sonin)

Sonin [30] presented an algorithm to com-

pute the Gittins index, which we refer to

as the state-elimination algorithm. As with

the largest-remaining-index algorithm, the

main idea behind the state-elimination al-

gorithm is to iteratively solve (2) in the

decreasing order of K The computations

are based on a relation of (2) with optimal

stopping problems [29].

A simplified version of the state-elimina-

tion algorithm is presented below. See [30]

for a more efficient version that also works

when the discount factor (3 depends on the

state.

Ini t ia l izat ion: The initialization step is

identical to that of the largest-remaining-

index algorithm: Identify the state a i with

highest Gittins index, which is given by

Oil arg m a x r a

where ties are broken arbitrarily. The cor-
responding Gittins index is

V(ol{) L
 c*l �

Step k of the recursion uses a mxm

matrix and rax 1 vectors a w and

b (*> , where ra = |5(a /e)| = ra-fc-f 1 . These

are initialized as Q^1) = P , d^1) = r, and

b(!) = (1 - / 3) 1 .

446 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

Recursion step: After the states ai,
. . . , a/e-i have been identified, the next

step is to identify the state a k with

the kth largest Gittins index. Even

though ak is not known, we know that

C(ak) = { a i , . . . , ajb-i} and S{ak) = X \

{ a i , . . . , a k - i } . Let the model in the step

k- 1 be Q ^ " 1) , d ^ " 1) and b ^ " 1) . Define

A/c-i =
0

1 _ tfQ^-
1
) ajb-i

Let fa = |5(afe)|- Define rax fa matrix by

Va,b£S(ak):

o
(f c)

 - Q i V ^ - i Q ^ Q
(fe-i)
atk-i,b'

(5)
and define rax 1 vectors by Va E S(ak)

(6)

Note that the entries of Q<-
k
K d<

fc
> and

are labeled according to the set S(ak). For

example, if X — {1 ,2,3}, a i = 2 then

S (a i) = {1 ,3} and

d (2)

Q<2> =

r a < 2 > !

a
2
>

0 (2 > q (2)
1 Wi 3

Qft Q&

and b<
2
>

bS
2)

2 arithmetic operations [since we can pre-

COmpute Xk-lQaHakhi f° r a € S(otk)

before updating Q(&)]. Thus, overall this

algorithm requires

m

] T [2(ra-fc-f l)
2
 -f O(fc)] = | m 3 + 0 (m 2)

k=l

arithmetic operations. Our calculations

differ from the ra
3 -f 0(ra

2
) calculations

reported in [24] because [24] assumes that

the update of each element of Q ^ takes

3 arithmetic operations, but, as we argued

above, this update can be done in 2 op-

erations if we pre-multiply row a k - i of

with Afc-i. Furthermore, in the

implementation presented in [24], b^) is

computed from requiring additional

0(ra
2
) arithmetic operations. The above

implementation avoids those by keeping

track of b^k\

Example 24.3.2 Reconsider the bandit

process of Example 24.3.1. Using the state-

elimination algorithm, the Gittins index

for this bandit process is calculated as fol-

lows.

Ini t ia l izat ion: Start by identifying the

state with the highest Gittins index:

After calculating and

choose

d
{
a
k)

a k = arg max - ^ r

where ties are broken arbitrarily. The cor-

responding Gittins index is

u (a k) = (! - / ?)

d(k) q
afc

b w

a\ — arg max r a

u{a i) = r 3 = 30.

Initialize:

Q(«

d (i)

3;

0.1 0 0 . 8 0 . 1

0.5 0 0.1 0.4
0.2 0.6 0 0 .2

0 0.8 0 0.2

-16" "0.25"
19
30 , = 0.25

0.25
4 0.25

Computational complexity: The per-
formance bottleneck of this algorithm is

the update of matrix Q ^ at each step. In

step fc, the matrix Q W has (ra—fc+1)2 ele-

ments and update of each element requires

Recursion step:

1. Step k = 2: Although a 2 is not
known, we know that C(a2) is {3},
S(a2) = {1,2,4}, and Ax - 0/(1 -

447 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

(3qW) = 0.75. Using (5) and (6) we

get

Q®

1 2 4

0.22 0.36 0.22

0.515 0.045 0.415

0 0.8 0.2 .

Since 5(04) = {4} has only one ele-

ment, we have

Q4 = 4, and

d(4)

i/(a4) = (l - 0) ^ = 13.236.

34 , v
 1 " 0.4 "

21.25 , b<
2
> = 2 0.269 24.3.3

4 4 . 0.25 .

Hence,

di
2)

a 2 = arg max - ^ r = 1;

j

V(Q2) = (1 - / 3) 5 ^
(2)
o

bl2

21.25.

2. Step ft = 3: Although 0:3 is not
known, we know that C(a3) = {1 ,3} ,

5 (o 3) = {2,4}, and A2 = 0/(1 -

0 Q $) = 0.898. Using (5) and (6) we

get

q (3) = 2

4

2 4

0.21 0.52

0.8 0.2

d<
3
> =

 2 36.98 , b<
3
> =

 2 0.45

4 4 ' 4 0.25_

Hence,

d(3)
O-a

a 3 = arg max = 2;

d(3)

i/(a3) = = 20.372.
ba3

3. Step k = 4: Although 04 is
not known, we know that C(a4) =

{1,2,3}, 5(0:4) = {4}, and A3 =
(3/(1 - 0 Q ^) = 0.882. As in the pre-

vious steps, using (5) and (6) we get

4

4 [0.5691

d ^ = 4 [30.37], b<
4
>= 4 [0.574].

Triangularization Algo-
rithm (Denardo, Park,
and Rothblum)

Denardo, Park, and Rothblum [12], inde-

pendently of Sonin, presented an algorithm

that is similar to the state-elimination al-

gorithm. We refer to this algorithm as

the triangularization algorithm. Although

the main motivation for this algorithm was

to compute the performance of any index

strategy, it can be used to compute the Git-

tins index as well.

A slightly modified version of the trian-

gularization algorithm is presented below.

See [12] for the original version.

In i t i a l i za t ion : The initialization step is

identical to the previous two algorithms:

Identify the state a\ with the highest Git-

tins index, which is given by

a\ = arg max r a
a£X

where ties are broken arbitrarily. The cor-

responding Gittins index is

V(oli) =rftl.

The recursion step uses a ra x (ra 4- 2)

tableau

= [Q<
fc
>|d<

fe
>|b<

fe
>]

where Q ^ is a ra x ra square matrix and

d W and b ^ are ra x 1 vectors. Initialize

these as Q W = I - 0 P , d ^ = r, and

b W = (1 - / 3) 1 .

448 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

Recursion step: After the states
. . . , a k - i have been identified, the next

step is to identify the state a k with the

fcth largest Gittins index. As before, even

though a k is not known, we know that

C(otk) = { a i , . . . , a/c-i} and S(ak) = X \

{ a i , . . . , a k ~ 1}. Suppose the tableau in

step A; — 1 is

M (/ c - 1) - [q C * - 1 * I d ^ - 1) I b ^ - 1)] .

Update this tableau using the following el-

ementary row operations

1. Let A/c-i = 1 /QofcZi^afc-i� Scale

row a k ~ i of tableau M ^ - 1) by A^-i

[i.e., rescale row a k - i such that the

(ak-i,ak-i) entry of M ^ " 1) is 1].

2. For each state a G S(ak), subtract row

ak-i times the constant Q^afe_i from

row a [these operations set Q ^ to 0

for b G C(ak)]. The updated tableau

is M<*).

After updating the tableau, choose

d
(
a
k)

a k = arg max - j r r

where ties are broken arbitrarily. The cor-

responding Gittins index is

Ak)

Computational complexity: The per-
formance bottleneck of this algorithm is

the elementary row operations performed

at each step to update the tableau. In

step fc, this algorithm performs (ra — fc + 2)

row operations and each row operation

requires 2(ra — fc -f- 1) arithmetic opera-

tions [This is because columns correspond-

ing to C(ak-1) need not be updated be-

cause Q^afe-i is 0]. Thus, overall the algo-

rithm requires

m

] T [2(ra - fc -f l)(ra - fc + 2) + 0(fc
2
)]

k—1

= |ra
3
 + 0(ra

2
)

arithmetic operations.

Example 24.3.3 Reconsider the bandit

process of Example 24.3.1. Using the tri-

angularization algorithm, the Gittins index

for this bandit process is calculated as fol-

lows:

Init ia l izat ion: As in the other two algo-

rithms, the state with the highest Gittins

index is

a i — arg max ra = 3;
a€X

v(ai) = 30.

Initialize the tableau M ^ as

� 0.925 0 - 0 . 6 - 0 . 0 7 5 16 0.25"
- 0 . 3 7 5 1 - 0 . 0 7 5 - 0 . 3 19 0.25
- 0 . 1 5 - 0 . 4 5 1 - 0 . 1 5 30 0.25

0 - 0 . 6 0 0.85 4 0.25

Recursion step:

1. Step k = 2: Since a\ = 3, set

Ai = I/Q33 = 1. Using the elemen-

tary row operations, the tableau M^2)

is updated to

" 0.835 - 0 . 2 7 0 - 0 . 1 6 5 34 0.4 "

- 0 . 3 8 6 0.966 0 - 0 . 3 1 1 21.25 0.269
- 0 . 1 5 - 0 . 4 5 1 - 0 . 1 5 30 0.25

0 - 0 . 6 0 0.85 4 0.25

Hence,

di
2)

a 2 = arg max = 1;
a€{l,2,4} bi

2)

d (2)

i/(a2) = (l - / ?) - ^ = 21.25.

2. Step k = 3: Since a2 = 1, set
A2 = 1/Qi^i = 1.198. Using the el-

ementary row operations, the tableau

M^3) is updated to

� 1 - 0 . 3 2 3 0 - 0 . 1 9 8 40.719 0.479"
0 0.841 0 - 0 . 3 8 8 36.978 0.454

- 0 . 1 5 - 0 . 4 5 1 - 0 . 1 5 30 0.25

0 - 0 . 6 0 0.85 4 0.25

449 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

Hence,

d (2)

a 2 = arg max -£rr = 2;
«e{2.4} bi

2)

v(a3) = (1 - 0)

d(3)

k (. 3)

20.362.

3. Step ft = 4: Since as = 2, set
A3 = 1 / Q ^ = 1.189. Using the el-

ementary row operations, the tableau

M (4) is updated to

� 1 -0 .323 0 -0 .198 40.72 0.479"
0 1 0 -0 .461 43.95 0.539

-0 .15 -0 .45 1 - 0 . 1 5 30 0.25
0 0 0 0.574 30.37 0.574

Since S(a4) = {4} has only one ele-

ment, we have

c*4 = 4 and

d(4)

i/(a4) = (1 - / ?) - ^ - 13.236.

24.3.4 Fast-Pivoting
Algorithm
(Nino-Mora)

Nino-Mora [24] presented an algorithm to

compute the Gittins index that refines a

previous algorithm proposed by Kallen-

berg [16]. We refer to this algorithm as the

fast-pivoting algorithm. As with the other

algorithms, the main idea behind the fast-

pivoting algorithm is to iteratively solve (2)

in the decreasing order of K The compu-

tations are based on a relation of (3) with

marginal productivity rate [24].

A modified version of the algorithm is

presented below. See [24] for the original

version.

In i t i a l i za t ion : The initialization step is

identical to the previous three algorithms:

identify the state ot\ with the highest Git-

tins index, which is given by

a\ = arg m a x r 0

where ties are broken arbitrarily. The cor-

responding Gittins index is

i/(a 1) L
 ai �

The recursion step uses a m x m matrix

and rax 1 vectors b ^ and S k \ where

ra == |£(a/c)| = m — k -f 1. Initialize these

as Q « = 0 m x m , b*
1
) = 1, dW = r.

Recursion step: After the states
have been identified, the

next step is to identify the state ak

with the fcth largest Gittins index.

Even though ak is not known, we

know that C(ak) = { a i , . . and

S(ak) = X \ { a i , . . . , a f c - i } . Let the

model in the step k — 1 be Q ^ - 1) , b ^ " 1)

and d ^ " 1) and let ra = \S(ak)\.

Define the (ra 4- 1) x 1 vector by Va e

S(ak-1),

Let

a,ak-1

A k-

- £

b€C(ak)

P

l - M t ^ '

(*"l)Pl

(7)

Define the m x m matrix by Va G S(ak)

tmdb e X\{ak-i},

= -Afe-ihi*-
1
). (8)

and the ra x 1 vectors by Va € S(ak)

b W ^ b ^ + A f c - x h i ^ b ^ . ' 0)

d(fe) _ d (f e - i) _
u

a
 u

afc_ 1

u(fc-1)

"a

u
c*fc_i ^a

(10)

After the model has been updated, choose

OLk arg max d ^
a€S(afc)

 a

and the corresponding Gittins index is

given by

«/(«*) = d&>.

426 Multi-Armed Bandits, Gittins Index , and Its Calculation J^ll

Computational complexity: The per-
formance bottleneck of this algorithm is

the calculation of h ^ " 1) and the update of

Q(k\ each of which requires 2(m — k + 2)k

additions and multiplications [for the up-

date of Q ^ , we know that for b € S(otk),

Q i s 0, hence we do not need to calcu-

late those using (8)]. Thus, overall the al-

gorithm requires

Hence,

1

= 2

1.6
1.075 , d<2>

1

= 2

* 21.25 "

19.767

4 1 4 4

a2
 :

= arg ; max
o€{ l ,2 ,4}

d(2)
= i;

/(a2) = = 21.25.

[fe(4(m-ife)+l)+0(Jfe)] = |m
3
+0(m

2
)

l

arithmetic operations.

E x a m p l e 24.3 .4 Reconsider the bandit

process of Example 24.3.1. Using the fast-

pivoting algorithm, the Gittins index of

this bandit process is computed as follows:

Init ial ization: As in the other two algo-

rithms, the state with the highest Gittins

index is

a \ — arg max ra = 3;

u(a i) = 30.

Initialize:

Q (i)

0 000
0000
0000
0000

- 1 - " 16"
1
1 , d « =

19
30

. 1 . 4

b<l)

Recursion step:

1. S t e p k = 2: Since a\ = 3, using (7)

we get

h(D
ro.s

0 .1

0
0

and Ai =/?/(l

(8)-(10) we get

0.75. Using

Q (2)
0 0 -0 .6 0

0 0 -0.075 0

0 0 0 0

2. S t e p k = 3: Since a 2 = using (7)

we get

h < 2 > = 2

4

0.22

0.515

0

and A2 = /?/(l—/?h^2)) = 0.898. Using

(8)—(10) we get

Q (3) -0.463 0 -0.353 0

0 0 0 0

b (3) = 2 1.815

C
M

 II
co TJ 20.372

4 1 4 4

Hence,

as = arg max d̂ 3̂ = 2;
a£S(a 3)

u(as) = di
3)

 = 20.372.

3. S t e p k == 4: Since as = 2, using (7)

we get

v,(3) _ 2 [0.212
1 1

 4 0.8

and A3 = /?/(l-/?h£3)) = 0.891. Using
(8)-(10), we get

Q
(4)

 = 4 [0 -0.713 0 0],

t /
4

) = 4 [2.294], d ^ = 4 [13.236]-

Since 5(0:4) = {4} has only one ele-

ment, we have

a4 = 4, and i/(a4) = = 13.236.

451 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

24.3.5 An Efficient Method to
Compute Gittins Index
of Multiple Processes

Consider a MAB problem in which all

processes have a finite state space X
1
 —

{ l , . . . , ra*} . Let al
mi be the state with

the smallest Gittins index in process i,

i = 1 , . . . ,n. Let

i* = argmaxz/^^i)
i

be the process whose smallest Gittins in-

dex is the largest among all alternatives.

Then, a Gittins index strategy will eventu-

ally settle on process i* and play it forever.

Based on the above insight, Denardo,

Feinberg, and Rothblum [11] proposed the

following method to efficiently compute the

Gittins index of multiple processes in par-

allel.

Init ial ization: Identify the state a\

with the highest Gittins index for all

processes and calculate its Gittins index

v
%

{ol\) (using any of the methods described

above).

Recursion step: Suppose we have com-
puted the Gittins index of the k

%th highest

state of process i, i — 1 , . . . , n. Let

three bandit processes, each with state

space X — {1,2,3,4}, transition matrix

0.1 0 0 .80 .1
0.5 0 0.10.4
0.2 0.6 0 0.2
0 0.8 0 0.2

and reward vectors

_
16" -40- "20"
19

r
2
 -

10
r 3 _ 15

30 8 5
 1

 — 22
4 15 25

Let the discount factor be /? = 0.75. Note

that the first bandit process is identical to

that which we have considered in the pre-

vious examples. Using the above method,

we proceed as follows:

Init ial ization: Compute the state with

the highest Gittins index for each of the

processes to get:

= 3 ,

4,

v \ a \) = 30;

u \ a l) = 40;

a? u6{a\) = 25.

Recursion step:

j = a x g m a x i / ' (< 4 «) - (11)

1. Step (fc\fc
2
, ft

3
) = (1 ,1 ,1) . Us-

ing (11) gives that j = 2. So, find the

next highest Gittins index of bandit

process 2, which gives

a\ = 2, v2[a\) = 18.654.

If y < raJ , then identify the state with

the next highest Gittins index in process j

(using any one of the methods described

above), compute the Gittins index of that

state, set fcJ = + 1, and repeat. Other-

wise, if fcJ = mJ, then j = i* and we don't

need to compute the Gittins index of the

remaining states as the Gittins index strat-

egy will never play a process in those states

(and instead prefers to play process i*).

E x a m p l e 24.3 .5 To illustrate the above

method, consider a MAB problem with

2. Step (fc
1
,*

2
,*

8
) = (1 ,2 , 1) . Us-

ing (11) gives that j = 1. So, find the

next highest Gittins index of bandit

process 1, which gives

a\ 1, vl(a\) — 21.25.

3. Step (fc^fe
2
,*

8
) = (2 ,2 , 1) . Us-

ing (11) gives that j = 3. So, find the

next highest Gittins index of bandit

process 3, which gives

a) = 3, v
3
(al) = 22.45.

428 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

4. Step (fc\fc
2
,fc

8
) = (2,2 ,2). Us-

ing (11) gives that j = 3. So, find the

next highest Gittins index of bandit

process 3, which gives

<4
1, i/3(al) = 21.209.

5. Step (fc
1
, fc

2
, A;

3
) = (2 ,2 ,3) . Us-

ing (11) gives that j = 1. So, find the

next highest Gittins index of bandit

process 1, which gives

2, v
l
(a\) = 20.372.

6. Step (fc\fc
2
,fc

3
) = (3 ,2 ,3) . Us-

ing (11) gives that j = 3. So, find the

next highest Gittins index of bandit

process 3, which gives

al = 2, v
3
(a

3
4) = 19.113.

7. Step (fc
1
, fc

2
, fc

3
) == (3 ,2 ,4) . Since

k
s = 4, stop the algorithm. Note that,

although we have not calculated the

Gittins index of state 4 of process 1

and of states {3,4} of process 2, we

know that Gittins index of these states

is less than 19.113, the smallest Git-

tins index of process 3. So, the Git-

tins index strategy will never play pro-

cess 1 in state 4 or process 2 in states

{3,4}.

24.4 On-Line Algorithms for
Computing Gittins Index

As in the case of off-line algorithms, we

consider a single bandit process and drop

the label i of the bandit processes. For ease

of exposition, assume that Xt takes value

in a finite space X — { 1 , . . . , m). These

algorithms are based on dynamic program-

ming and linear programming and extend

to countable state spaces based on stan-

dard extensions of dynamic and linear pro-

gramming to countable state spaces. As

before, denote the ra x ra transition prob-

ability matrix by P = [Pa,b] and represent

the reward function using a ra x 1 vector r.

Furthermore, let 1 denote the ra x 1 vector

of ones and 0 m x i denote the rax 1 vector

of zeros.

On-line algorithms for Gittins index are

based on bandit processes with the retire-

ment option introduced by Whittle [34]. In

such a bandit process, a player has the op-

tion to either play a regular bandit process

and receive a reward according to the re-

ward function r or choose to retire and re-

ceive a one-time retirement reward of M .

Thus, the player is faced with an optimal

stopping problem of maximizing

r - l

t—0

X0 = xq

over all { c r (X i , . . . , Xt)}^L0 measurable

stopping times r .

For a fixed value of retirement reward,

an optimal solution is given by the solution

of the following dynamic program. Let the

ra x 1 vector be the unique fixed point

of

r(M) max{r- f /?Pv
(M)

,Ml} (12)

where the max is element-wise maximum

of two vectors. Standard results in Markov

decision theory [26] show that the above

equation has a unique point.

Fix a state a € X and let Ma denote

the smallest retirement reward such that

a player is indifferent between playing the

bandit process starting at a or retiring,

that is,

Mr Q. = min | M W = M

r a + p J 2 v « A
M)

} . (13)
X

Whittle [34] showed that

i/(a) = (1 -p)Ma. (14)

The on-line algorithms use this interpre-

tation to compute the Gittins index of a

particular state a.

453 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

24.4.1 Restart Formulation
(Katehakis and
Veinott)

Katehakis and Veinott [18] related Whit-

tle's retirement option to a restart problem

and then solved it using dynamic program-

ming. The intuition behind their approach

is the following. Fix a state a € X. When

the retirement reward is Ma, the player is

indifferent between playing the bandit pro-

cess starting in state a or retiring. There-

fore the option of retirement reward of Ma

is equivalent to the option of restarting in

state a .

On the basis of the above equivalence,

consider the following restart problem. At

each time, the player has an option to

play the bandit process or instantaneously

restart in state a . To describe a solution

of this restart problem, define = r a l

and Q(°) as

QS!l = Pa,v, V x , P 6 X

to be the instantaneous reward and transi-

tion probability matrix for the restart op-

tion and r^
1
) = r and Q ^ = P to be the

instantaneous reward and transition ma-

trix for the continuation option. Then a

solution to the restart problem is given by

the following dynamic program. Let the

rax 1 vector v be the unique fixed point of

v = max {r<°> + /?Q
(0)

v, r ^ + /3Q<
1
>v}

(15)

where max is the element-wise maximum

of two vectors. Then the Gittins index of

state a is

v{a) = (1 - /?)vtt

and the corresponding stopping set is

S(a) = {xeX\ r<°> + /?Q
(0)

v

>rW + /3Q
(1)

v}.

The fixed point equation (15) depends on

the state a [because r̂ 0̂ and Q(°) depend

on a]. This equation may be solved us-

ing standard tools for solving dynamic pro-

grams such as value iteration, policy it-

eration, or dynamic programming. Beale

(in the discussion of [15]) proposes an on-

line algorithm that can be viewed as a spe-

cial form of policy iteration to solve (15).

See [26] for details on numerically solving

fixed point equations for the form (15).

Example 24.4.1 Reconsider the bandit

process of Example 24.3.1. To compute the

Gittins index of state 2 (which is the state

with the third largest index), proceed as

follows:

Define

and

"19" "0.500.1 0.4"

p(°) = 19
19
19

, Q (0) =
0.5 0 0.1 0.4
0.5 0 0.10.4
0.5 0 0.10.4

"16" "0.1 0 0.80.1"
19

, Q (1) =
0.5 0 0.1 0.4

30 , Q (1) = 0.2 0.6 0 0.2
4 0 0.8 0 0.2

r (i) =

The dynamic program for the restart for-

mulation is given by (15).

As mentioned above, there are various

algorithms such as value iteration, policy

iteration, linear programming, etc. to solve

the above dynamic program. Using any

one of these algorithms gives that

83.170
81.488
91.368
81.488

is the unique fixed point of (15). Hence

i/(2) = (1 - P)v2 = 20.372

and

5(2) = {2,4}.

24.4.2 Linear Programming
Formulation (Chen and
Katehakis)

Chen and Katehakis [10] showed that Ma

given by (13) may be computed using a

430 Multi-Armed Bandits, Gittins I n d e x , and Its Calculation J^ll

linear program. A modified version of this

linear program is presented below.

Define h = 1 — e a , where e a is the ra x 1

unit vector with 1 at the ath position. Let

diag(h) denote the ra x ra diagonal matrix

with h as its diagonal. Let the (m + 1) x 1

vector z = [y
T
 | z]

T
, where y is a ra x 1

vector and z is a scalar, be the solutions of

the following linear program.

minimize [(1 - / ?) (1) t | m]

(16)

subject to

[diag(h) — /3P | l] z > r,

y > o mxX ,

z unrestricted.

Then the Gittins index of state a is

u(a) = z

and the corresponding stopping set is

S{a) = {xeX |y* = 0}.

The linear program (16) depends on the

state a (because h depends on a). This

linear program may be solved using stan-

dard tools. See [6] for details.

E x a m p l e 2 4 . 4 . 2 Reconsider the bandit

process of Example 24.3.1. To compute the

Gittins index of state 2 (which is the state

with the third largest index), proceed as

follows:

Define h - [l 1 0 l] T . Let z =

[y T | zJ T be the solution to the following

linear program:

minimize [0.25 0.25 0.25 0.25 4] z

(17)

subject to

0.925 0 - 0 . 6 - 0 . 0 7 5 1" " 16'
- 0 . 3 7 5 1 - 0 . 0 7 5 - 0 . 3 1

z >
19

- 0 . 1 5 - 0 . 4 5 0 - 0 . 1 5 1 z > 30
0 - 0 . 6 0 0.85 1 . 4

As mentioned above, there are various al-

gorithms to solve linear programs. Using

any of these algorithms gives that

1.68

0
9.88
0

20.372

y > o 4x i ,

z unrestricted.

is the unique optimal solution of (17).

Hence,

i/(2) = z = 20.372

and

S(2) = { x e X \ y x = 0}={2A}-

24.5 Computing Gittins Index
for the Bernoulli
Sampling Process

In clinical trials, it is common for treat-

ments to be modeled as a Bernoulli pro-

cess o with unknown success proba-

bility s
l
, i = 1 , . . . , n. Such a M A B setup

is called a Bernoulli sampling process be-

cause the player must sample from one of

the n available Bernoulli processes at each

time. Assume that s
l has a Beta(po? <7o)

distribution1 where p
l
0 and qfa are non-

negative integers. Suppose at time t, sam-

pling process i has resulted in k successes

and I failures. Then, the posterior distri-

bution of s
l is Beta(pJ, q\) where

Pt=Po +
 k

> Qt =Qo+Z-

Therefore, X\ = (pliQt)
 ma

y
 use

d
 as an

information state (or a sufficient statistic)

for the bandit process i. This state evolves

in a Markovian manner. In particular if

X} = (p lq i) then

x
If a random variable s has Beta(pyq) distribu-

tion, then its PDF (probability density function)

f(s) is proportional to s
p
(l — s)

q
. See [36] for

methods to elicit Beta priors based on expert opin-

ions in clinical trials.

455 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

= J(Pt + i><??), w.p. pj/(pj + ®J);
+ w.p.

where w.p. is an abbreviation for "with

probability." The average reward on

playing process i is the mean value of

B e t a (p \ , q \) , that is,

Pt

Pt + Qt

In this section, we describe the various al-

gorithms to compute the Gittins index of

such a Bernoulli sampling process. As be-

fore, since the computation of the index

depends only on that process, we drop the

label i and denote the sampling process

by {(Pt,Qt)}frLo a n (l *ts Gittins index by

u(p, q).

The main difficulty in computing the

Gittins index i/(p, q) is that the state space

X = is countably infinite. Hence, an

exact computation of the index is not pos-

sible. In this section we present algorithms

that compute the Gittins index with arbi-

trary precision by restricting to a truncated

state space Xl = {(p, q) \ p + q < L} for

sufficiently large value of L. The results

based on these calculations are tabulated

in [14]. Different approximations to z/(p, q)

have also been proposed in the literature,

and we describe a few of these in this sec-

tion as well.

24.5.1 Dynamic Programming
Formulation (Gittins)

Gittins [14] used the dynamic program-

ming formulation of Whittle's retirement

option [34], which was presented in Sec-

tion 24.4, to compute the Gittins index

z/(p, q). In the case of a Bernoulli sampling

process, the dynamic program (12) simpli-

fies to

+ + 1).

Let Mp q̂ be defined as in (13). Then,

the Gittins index is given by

PiQ'

Gittins [14] presents an approximate so-

lution of (18) by restricting to Xl =

{(P>q) I P + Q < discretizing M , and

using value-iteration. On the basis of these

calculations, the values of v(p,q) accurate

up to four decimal places are tabulated

in [14, Tables 8.4-8.8] for different values

of (3 e [0.5,0.99]. M A T L A B code for the

above calculations is also available in [14].

Gittins [14] also observed that for large

p 4- q the Gittins index v(p, q) is well ap-

proximated as follows: Let n = p + q and

p, = p/n, then

v(p, V M 1 - aO
A + Bn +

where A, B , and C depend on (3 and p.

The fitted values of A, B , and C as a func-

tion of /3 and p are tabulated in [14, Ta-

bles 8.9-8.11] for p £ [0.025,0.975] and

/? € [0.5,0.99].

24.5.2 Restart Formulation

(Katehakis and

Derman)

Katehakis and Derman [17] used the

restart formulation of Katehakis and

Veinott [18], which was presented in Sec-

tion 24.4.1, to compute the Gittins index

i'(p,q). In the case of the Bernoulli sam-

pling process, the dynamic program (15)

for computing the Gittins index of a state

(Po, Qo) simplifies to

v W = m a x { w W M } (18)
(M)

¥

P,q
m a x { w P 0 , g 0 , w P j J (19)

where where

432 Multi-Armed Bandits, Gittins Index, and Its Calculation

+ £i0v(p,q+ 1)

and wP0)g0 is defined similarly. Kate-

hakis and Derman presented an approx-

imate solution of (19) by restricting to

= {(P,q) I P + Q < L}. T h e y also

showed that for any £ > 0, there exists a

sufficiently large L = L(e) such that L it-

erations of value-iteration on the truncated

state space Xl gives a value function that

is within e of the true value function (Ben-

Israel and F l a m [3] had derived similar sim-

ilar bounds on value iteration for comput-

ing the G i t t i n s index to a specific preci-

sion). Thus, this method may be used to

calculate the G i t t ins index to an arbitrary

precision.

24.5.3 Closed-Form
Approximations

For large values of /?, q) of a Bernoull i

process m a y be approximated using dif-

fusion approximation and using the G i t -

tins index for a Weiner process. T w o such

closed-form approximations are presented

below.

A n important result in the context of

these approximation is by Katehakis and

Veinott [18], who showed that if we fol-

low an index strategy where the index is

within e of the G i t t i n s index, then the per-

formance of the index strategy is within e

of the optimal performance.

Whittle's approximation: W h i t -

tle [35] showed that for large p + q and /?,

the G i t t i n s index of a Bernoull i sampling

process may be approximated as

v(p, q) « /i-f-
p(l - p)

index of a Bernoull i sampling process may

be approximated as

1/(p, q) « jJL + crip
p

2 In/?
-

where \ i and <r2 are the mean and variance

of Beta(p, q) distribution, that is,

P a
2

 =
pq

(P + Q)' (p + q)
2
(p + q +1)'

(20)
p2 is the variance of Bernoulli(/z) distribu-

tion, that is,

P
2 = - p)

pq

(p + q)2'

and ip(s) is a nondecreasing, piecewise non-

linear function given by

f y / J / 2 , if 5 < 0 . 2 ;

0.49 — 0 . 1 1 s " 1 / 2 , if 0.2 < s < 1 ;

0 . 6 3 - 0 . 2 6 5 " 1 / 2 , if 1 < s < 5;

0.77 — 0 . 5 8 s - 1 / 2 , if 5 < s < 15;

{ 2 I n s — In I n s

— In 167I"}1/2, if s > 15.

Using the notation n = p+q, p = p/n, and

c = In (3~
1 the above expression simplifies

to

n^J(2c + n~
1
)p(l - p) + p - \

where n = p + p — pjn, and c = In f3~
1
.

Brezzi and Lai's approximation:

Brezzi and L a i [8] showed that the G i t t i n s

n + 1 \(n + l)c

T h i s closed-form expression provides a

good approximation for (3 > 0.8 and

min(p, q) > 4.

24.5.4 Qualitative Properties
of Gittins Index

K e l l y [19] showed that the G i t t i n s index is

nondecreasing with the discount factor 0.

Brezzi and L a i [7] showed that

P

•(3

457 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

where p and a
2 are the mean and variance

of Beta(p, q) distribution as given by (20).

Bellman [2] showed that

i/(p, q+ 1) < i/(p, g) < u(p + 1, q).

Thus, the optimal strategy has the stay-

on-the-winner property defined by Rob-

bins [27].

As p + q —> oo, Kelly [19] showed that

where s is the true success probability of

the Bernoulli process. The rate of conver-

gence slows down as (3 —> 1.

Kelly [19] showed that for any k > 0,

there exists a sufficiently large (3* such that

for (3 > (3*

y(p + M + l) <

Therefore, as (3 —� 1, the optimal strategy

tends to the least failure strategy: Sample

the process with the least number of fail-

ures and in case of ties select the process

with the largest number of successes.

Brezzi and Lai [7] (and also Roth-

schild [28], Kumar and Varaiya [21], and

Banks and Sundaram [1] in slightly differ-

ent setups) have shown that the Gittins

index strategy eventually chooses one pro-

cess that it samples for ever, and there is

a positive probability that the chosen pro-

cess does not have the maximum s\ Thus,

there is incomplete learning when following

the Gittins index strategy.

24.6 Conclusion

In this chapter, we have summarized vari-

ous algorithms to compute the Gittins in-

dex. We began by considering general

Markovian bandit processes and described

off-line and on-line algorithms to compute

the Gittins index. We then considered the

Bernoulli sampling process, described al-

gorithms that approximately compute the

Gittins index, and presented closed-form

approximations and qualitative properties

of the Gittins index.

References

[1] J. S. Banks and R. K . Sundaram,
Denumerable-armed bandits, Economet-

rica: Journal of the Econometric Society,

vol. 60, no. 5, pp. 1071-1096, 1992.

[2] R. Bellman, A problem in the sequential
design of experiments, Sankhya: The In-

dian Journal of Statistics, vol. 16, no. 3/4,
pp. 221-229, 1956.

[3] A. Ben-Israel and S. Flam, A bisec-
tion/successive approximation method
for computing Gittins indices, Mathe-

matical Methods for Operations Research,

vol. 34, no. 6, pp. 411 -422, 1990.

[4] D. Bergemann and J. Valimaki, Bandit
problems, in The New Palgrave Dictio-

nary of Economics, S. N. Durlauf and
L. E . Blume, Eds. Macmillan Press, pp.
336-340, 2008.

[5] D. A. Berry, Adaptive clinical trials: the
promise and the caution, Journal of Clin-

ical Oncology, vol. 29, no. 6, pp. 606-609,
2011.

[6] D. Bertsekas and J. N. Tsitsiklis, Intro-

duction to Linear Optimization. Athena

Scientific, 1997.

[7] M. Brezzi and T . L. Lai, Incomplete
learning from endogenous data in dy-
namic allocation, Econometrica, vol. 68,
no. 6, pp. 1 5 1 1 - 1 5 1 6 , 2000.

[8] M. Brezzi and T . L. Lai, Optimal learning
and experimentation in bandit problems,
Journal of Economic Dynamics and Con-

trol, vol. 27, no. 1, pp. 87-108, 2002.

[9] S. Bubeck and N. Cesa-Bianchi, Regret
analysis of stochastic and nonstochastic
multi-armed bandit problems, Founda-

tions and Trends in Machine Learning,

vol. 5, no. 1, pp. 1 - 1 2 2 , 2012.

[10] Y . R. Chen and M. N. Katehakis, Linear
programming for finite state multi-armed
bandit problems, Mathematics of Opera-

tions Research, vol. 1 1 , no. 1, pp. 180-
183, 1986.

[11] E . V . Denardo, E. A. Feinberg, and
U. G. Rothblum, The multi-armed ban-
dit, with constraints, Annals of Opera-

tions Research, vol. 208, pp. 37-62, 2013.

434 Multi-Armed Bandits, Gittins Index, a n d I t s Calculation J^ll

[12] E . V . Denardo, H. Park, and U. G. Roth-
blum, Risk-sensitive and risk-neutral
multiarmed bandits, Mathematics of Op-

erations Research, pp. 374-396, 2007.

[13] J. C. Gittins and D. M. Jones, A dy-
namic allocation index for the discounted
multiarmed bandit problem, in Progress

in Statistics, Amsterdam, Netherlands:
North-Holland, vol. 9, pp. 241-266, 1974.

[14] J. Gittins, K . Glazebrook, and R. We-

ber, Multi-Armed Bandit Allocation In-

dices, Wiley, 2011.

[15] J. C . Gittins, Bandit processes and
dynamic allocation indices, Journal of

the Royal Statistical Society, Series B

(Methodological), vol. 41, no. 2, pp. 148-
177, 1979.

[16] L. C. Kallenberg, A note on M N Kate-
hakis' and Y . - R . Chen's computation of
the Gittins index, Mathematics of opera-

tions research, vol. 1 1 , no. 1, pp. 184-186,
1986.

[17] M. N. Katehakis and C. Derman,
Computing optimal sequential allocation
rules in clinical trials, Lecture Notes-

Monograph Series, vol. 8, pp. 29-39, 1986.

[18] M. N. Katehakis and A. F. Veinott, The
multi-armed bandit problem: decompo-
sition and computation, Mathematics of

Operations Research, vol. 12, no. 2, pp.
262-268, 1987.

[19] F. Kelly, Multi-armed bandits with dis-
count factor near one: The Bernoulli case,
The Annals of Statistics, vol. 9, no. 5, pp.
987-1001, 1981.

[20] V . Kuleshov and D. Precup, Algorithms
for the multi-armed bandit problem,
Journal of Machine Learning Research,

vol. 1, pp. 1-48, 2000.

[21] P. R. Kumar and P. Varaiya, Stochastic

Systems: Estimation Identification and

Adaptive Control, Prentice Hall, 1986.

[22] T . L. Lai and H. Robbins, Asymptot-
ically efficient adaptive allocation rules,
Advances in applied mathematics, vol. 6,
no. 1, pp. 4-22, 1985.

[23] A. Mahajan and D. Teneketzis, Foun-

dations and Applications of Sensor

Management, ch. Multi-armed bandits,

Springer-Verlag, pp. 1 2 1 - 1 5 1 , 2008.

[24] J. Nino-Mora, A (2/3)n3 fast-pivoting al-

gorithm for the Gittins index and optimal

stopping of a Markov chain, INFORMS

Journal on Computing, vol. 19, no. 4, pp.

596-606, 2007.

[25] J. Nino-Mora, Stochastic scheduling. En-

cyclopedia of Optimization, vol. 5, pp.

367-372, 2009.

[26] M. Puterman, Markov Decision Pro-

cesses: Discrete Stochastic Dynamic Pro-

gramming, John Wiley and Sons, 1994.

[27] H. Robbins, Some aspects of the sequen-
tial design of experiments, Bulletin of

American Mathematics Society, vol. 58,
pp. 527-536, 1952.

[28] M. Rothschild, A two-armed bandit the-
ory of market pricing, Journal of Eco-

nomic Theory, vol. 9, no. 2, pp. 185-202,
1974.

[29] I. Sonin, The elimination algorithm for
the problem of optimal stopping, Math-

ematical methods of operations research,

vol. 49, no. 1, pp. 1 1 1 - 1 2 3 , 1999.

[30] I. M. Sonin, A generalized Gittins index
for a Markov chain and its recursive cal-
culation, Statistics & Probability Letters,

vol. 78, no. 12, pp. 1526-1533, 2008.

[31] W. R. Thompson, On the likelihood that
one unknown probability exceeds another
in view of the evidence of two samples,
Biometrika, vol. 25, no. 3/4, pp. 285-294,
1933.

[32] P. Varaiya, J. Walrand, and C. Buyukkoc,

Extensions of the multiarmed bandit

problem: the discounted case, IEEE

Trans. Autom. Control, vol. 30, no. 5, pp.

426-439, 1985.

[33] R. B. Washburn, Application of multi-
armed bandits to sensor management, in
Foundations and Applications of Sensor

Management. Springer, pp. 153-175,
2008.

[34] P. Whittle, Multi-armed bandits and the
Gittins index, Journal of the Royal Statis-

tical Society, Series B (Methodological),

vol. 42, no. 2, pp. 143-149, 1980.

459 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll

[35] P. Whittle, Optimization Over Time, ser.
Wiley Series in Probability and Mathe-
matical Statistics, vol. 2, John Wiley
and Sons, 1983,.

[36] Y . Wu, W. J. Shih, and D. F . Moore, El ic-
itation of a beta prior for bayesian infer-
ence in clinical trials, Biometrical Jour-

nal, vol. 50, no. 2, pp. 212-223, 2008.

