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ABSTRACT

We consider the optimal design of a sensing system in which

a sensor can choose how and when to communicate to an es-

timator. The optimal choice of transmission and estimation

policies is made difficult by the fact that the sensor and the

estimator may use their entire history of observations. Tra-

ditionally, Markov decision theory is used to analyze such

multi-stage decision problems. But, Markov decision the-

ory assumes a single decision maker—an assumption that is

not satisfied in an active sensing system that has two decision

makers with different information. In this paper, we use the

approach of Nayyar et al (2011) to investigate the system as

a dynamic team. Using a series of structural results, we show

that the optimal policy is easy to implement. We also obtain a

dynamic programming decomposition to find optimal sensing

and estimation policies.

Index Terms— sensor networks, estimation theory, dy-

namic teams, stochastic control

1. INTRODUCTION
1.1. Motivation

Energy consumption is an important factor in the cost of op-

erating a sensor network. Sensors have limited battery. Once

the battery runs out, either the battery or the sensor needs to

be replaced, often manually, and at significant cost. There-

fore, it is important to investigate techniques for reducing the

energy consumption of the sensor network, even at the cost of

slight poorer performance.

One way to conserve energy is to allow the sensor to go

to sleep either for a pre-specified duration [1, 2], or for an

arbitrary duration to be woken up by external signal [3]. A

related approach is to allow the fusion center to control which

sensors to active at each time step [4].

Another approach is to allow the sensor not to choose

when to transmit or not. The simplest instance of such a

scheme is sensor “censoring” considered in [5, 6] for decen-

tralized hypothesis testing in a sensor network where each

sensor takes one measurement and chooses to transmit its

likelihood ratio or not.

In this paper, we consider a model with only one sensor

and an estimator. To conserve energy the sensor can decide

what and when to transmit. A similar model was considered

in [7,8] when the underlying state is assumed to have a Gauss-

Markov distribution and the estimation cost is quadratic. For

that model it was shown that the optimal transmission is of

a threshold type and the optimal estimation policy is similar

to Kalman filtering. However, in many sensing applications

the underlying state is not Gauss-Markov. One such example

is sensing of environmental variables like temperature, rain-

fall, soil-moisture, etc. where the underlying state saturates

after some level. For that reason, we instigate active sensing

without assuming the underling process to be Gauss-Markov.

1.2. Model and Problem Formulation

Consider the sensing system in which a sensor observes

the value of an environmental indicator (like temperature,

soil moisture, rainfall, etc.) and communicates that to

an estimator. Suppose that the environmental indicator

evolves as a first-order time-homogeneous Markov chain

fXt , t D 1; : : : ; T g, where Xt takes value a set X . As-

sume that Markov chain starts at x0 which is known to the

sensor and the estimator. The sensor generates signals fYt ,

t D 1; : : : ; T g, Yt 2 Y , and sends them to the estimator.

The signaling alphabet Y equals X [ fbg, where b (called

blank) indicates that the sensor did not transmit anything.

Transmitting any symbol in X consumes p� units of power,

while transmitting a blank does not consume any power. That

is, if the sensor signals y 2 Y , then it incurs a cost

p.y/ D

(

p�; if y 2 X ;

0; if y D b:
(1)

If the sensor transmits all its measurements (i.e., set Yt D

Xt ), then the estimator perfectly tracks the state Xt of the

environmental indicator. This perfect tracking consumes p�

units of power per unit time. In some applications, power

consumption at the sensor is more improtant than perfect re-

construction at the estimator. In such applications, the sensor

may encode its observations in real-time as follows:

Yt D ft .X1Wt ; Y1Wt�1/: (2)

Since transmitting blanks is free, the sensor saves power

whenever a blank is transmitted.

The estimator generates an estimate OXt 2 X of the envi-

ronmental indicator causally and in real-time as follows:

OXt D gt .Y1Wt / (3)



The quality of estimation is determined by a distortion

metric d on X . The distortion at time t is given by d.Xt ; OXt /.

Thus, it is possible to trade-off power consumed at the sensor

with the distortion at the estimator. To quantify this trade-off,

define the cost incurred at time t as

c.Xt ; OXt ; Yt / D p.Yt / C �d.Xt ; OXt /

where � > 0 is a scaling factor.

The system operates for a horizon T . The collection f WD

.f1; : : : ; fT / is called a transmission policy while the collec-

tion g WD .g1; : : : ; gT / is called an estimation policy. The

performance of any policy .f; g/ is given by the expected cost

J.f; g/ WD E
.f;g/

h

T
X

tD1

p.Yt / C �d.Xt ; OXt /
i

(4)

where the expectation is with respect to the joint measure in-

duced on f.Xt ; Yt ; OXt /, t D 1; : : : ; T g induced by the choice

of the policy .f; g/.

We are interested in the following optimization problem.

Problem 1 Given the statistics of the Markov process fXt ; t D

1; : : : ; T g, the transmission cost p�, the distortion function

d , and the scaling factor �, pick a causal policy .f; g/ of the

form (2) and (3) that minimizes J.f; g/ given by (4).

2. STRUCTURE AND IMPLEMENTATION OF

OPTIMAL POLICIES
2.1. Structure of optimal policies

The salient feature of the above model is that the data avail-

able at the sensor and the estimator is increasing with time.

The complexity of storing and processing this data increases

with time. We are interested in identifying a sufficient statis-

tic that does not increase with time. Finding such a sufficient

statistic is difficult for the following reason. The system is

dynamic. So, not only should the sufficient statistic at time t

be sufficient for the cost incurred at time t , it should also be

sufficient to calculate the sufficient statistic at time t C1. Such

a sufficient statistic is called an information state in stochastic

control [9]. Normally, Markov decision theory is used to find

such information states. However, Markov decision theory

is restricted to systems with one decision maker, so it cannot

be used directly in the above model which has two decision

makers: the sensor and the encoder.

To circumvent these difficulties we use the framework de-

veloped in [10]. Using this framework we prove the the struc-

ture of optimal transmission and estimation policies in four

stages. A brief proof outline is presented in Section 2.3.

Stage 1 The sensor may ignore the history of past observa-

tions and use a transmitting policy of the form

Yt D ft .Xt ; Y1Wt�1/

without any loss of optimality.

This stage removes part of the (time-increasing) data at

the sensor. Even after that, the data at the sensor and the esti-

mator is increasing with time.

Stage 2 The sensor and the estimator may restrict attention

to policies that have the following structure without any loss

of optimality.

1. The sensor either transmits its current observation or a

blank. Formally, the transmission policy f is such that

8t; Yt 2 fXt ; bg

2. If the estimator receives a non-blank symbol, it chooses

that symbol as its estimate. Formally, the estimation

policy g is such that

8t; yt ¤ b H) g.y1Wt / D yt :

The second stage shows that causal real-time coding does

not improve performance.

Stage 3 Let �X denote the space of probability distribu-

tions on X . For any transmission policy f define …t 2 �X

as

…t .x/ D P.Xt D x j Y1Wt�1/:

…t depends on the policy f only through .f1; : : : ; ft�1/. The

sensor and the estimator may use …t as a sufficient statistic

for Y1Wt�1 without any loss of optimality. Thus, using trans-

mission and estimation policies of the form

Yt D ft .Xt ; …t / and OXt D gt .Yt ; …t /

does not entail any loss of optimality.

The third stage shows that we may compress Y1Wt�1 into

…t . Thus, the sensor and the estimator do not need to store

Y1Wt�1 (which is increasing with time). They can store …t in-

stead which takes values in a time invariant space. However,

in practice, the space required for storing …t is much larger

than the space required for storing Y1Wt�1. If X is finite, …t

is a real-vector; if X is continuous, then …t is a real-valued

function. Nonetheless, combining the result of Stage 3 with

that of Stage 2 proves an efficient implementation of the opti-

mal policy.

Stage 4 Let � D �t .Y1Wt�1/ denote the last time before t

when the sensor transmitted a non-blank, i.e.,

� D maxfs < t W Ys ¤ bg

If all the Ys are blank, then we set � D 0. The sensor and

estimator may use .X� ; t � �/ as a sufficient statistic for …t

without any loss of optimality. In other words, using trans-

mission and estimation policies of the form

Xt D ft .Xt ; X� ; t � �/ and OXt D gt .Yt ; X� ; t � �/

does not entail any loss of optimality.

2.2. Implementation of optimal policies

The policies given in Stage 4 can be implemented as follows.

For a given t and t � � , the sensor needs to store the array of



Algorithm 1: Sensor Policy

let n D 0 and x� D x0

for every t do

let n D n C 1

if .xt ; x� / 2 A.t; n/ then

transmit xt

let x� D xt , n D 0

else

transmit b

Algorithm 2: Estimator Policy

let n D 0 and x� D x0

for every t do

let n D n C 1

if yt D b then

estimate B.t; n/Œx� �

else

estimate yt

let x� D yt , n D 0

indices

A.t; t � �/ D fx; x0 2 X W ft .x; x0; t � �/ D xg

and for each x0 2 X , the estimator needs to store

B.t; t � �/Œx0� D gt .b; x0; t � �/:

Using this stored information, the sensor and estimator oper-

ate as shown in Algorithms 1 and 2.

For infinite horizon problems, the arrays A and B only

depend on t � � and not on t . Thus, instead of storing a se-

quence of time varying arrays, we only need to store one 2D

array (A and B , respectively) at the sensor and the estima-

tor. In many applications, we can bound the maximum time

between successive non-blank transmission, i.e., upper bound

t � � . Suppose this bound is N . Then the memory required

to store A and B is at most N � jSj2.

2.3. Outline of the proof

We briefly outline the important steps of the proof. To prove

Stage 1, we show the following.

Lemma 1 Define Rt D .Xt ; Y1Wt�1/. For any policy .f; g/:

1. The process Rt is a controlled Markov process with

control action Yt , i.e.,

P.RtC1 j R1Wt ; Y1Wt / D P.RtC1 j Rt ; Yt /

2. The expected conditional cost given .R1Wt ; Y1Wt / de-

pends only on .Rt ; Yt /, i.e.,

EŒc.Xt ; OXt ; Yt / j R1Wt ; Y1Wt � D EŒc.Xt ; OXt ; Yt / j Rt ; Yt �:

The proof of the above lemma follows by showing conditional

independence between appropriate random variables.

Arbitrarily fix the estimation policy g and consider the op-

timal design of the transmission policy. Markov decision the-

ory [9] and Lemma 1 imply the result of Stage 1.

The proof of the result of Stage 2 proceeds by backward

induction and an interchange argument. Fix a time t . Assume

that the policy from time t C 1 up to T has the structure of

Stage 2, while the policy from time 1 up to t has the structure

of Stage 1. We can then construct an alternative policy that

has the structure of Stage 2 from t up to T and performs as

well as the original policy. (The details of this construction

are omitted due to space limitations).

Thus, starting with a policy that has the structure of

Stage 1, we can proceed iteratively in a backward manner

and construct an alternative policy that has the structure of

Stage 2, but performs as well as the original policy. This

construction implies the result of Stage 2.

To prove the result of Stage 3, we use the framework de-

veloped in [10] and consider the system from a point of view

of a coordinator that observes the common data Y1Wt�1 avail-

able at both the sensor and the estimator. This coordinator

chooses maps ' W X 7! Y and 
 W Y 7! X that are used

by the sensor and the estimator to select their actions (Yt and
OXt , respectively) as a function of their local data (Xt and Yt

respectively). Thus, first the coordinator chooses the maps

.'t ; 
t / using a coordination policy h D .h1; : : : ; hT / as:

.'t ; 
t / D ht .Y1Wt�1/

and then the sensor and the estimator choose their actions as

Yt D 't .Xt /; OXt D 
t .Yt /:

Mahajan et al [10] shows that this coordinated system is

equivalent to the original system. Furthermore, the coordi-

nated system is a centralized (single-agent) partially observed

system. So, we can use the results from POMDPs (partially

observable Markov decision processes) to find the structure

of the optimal policies and translate that result back to the

original model. These steps give the result of Stage 3.

Stage 4 follows from the fact that if we are using poli-

cies of the form of Stage 2, then …t .xt / depends on Y1Wt�1

through only Y� Wt�1. By definition Y� D X� and Ys D b,

s D � C 1; : : : ; t � 1. This yields the result of Stage 4.

3. DYNAMIC PROGRAMMING DECOMPOSITION

We cannot directly obtain a dynamic programming decompo-

sition for the above model because it has two decision makers,

the sensor and the estimator. Markov decision theory assume

one decision maker. Nonetheless, we can use the framework

of [10] and consider the system from the point of view of a co-

ordinator (as described in Section 2.3). The coordinated sys-

tem is a centralized partially observed system. So, we can use



Markov decision theory to obtain a dynamic programming de-

composition to find an optimal coordinated policy and then

translate that policy to the original system.

Using the above approach, we get the following:

Proposition 1 Define a sequence fVt g of function recursively

as follows:

VT .…T / D min
.'T ;
T /

n

EŒc.XT ; OXT ; YT / j …T �
o

and for t D T � 1; : : : ; 1

Vt .…t / D min
.'t ;
t /

n

EŒc.Xt ; OXt ; Yt / C VtC1.…tC1/ j …t �
o

where 't and 
t are maps defined in Section 2.3. Let h�
t .�/ D

.'�
t ; 
�

t / denote the arg min at time t when …t D � . Then,

h� is an optimal coordination policy. Furthermore,

f �
t .xt ; �t / D '�

t .�t /.xt /; g�
t .yt ; �t / D 
�

t .�t /.yt /:

is an optimal transmission and estimation policy for the orig-

inal system.

Although the above dynamic program sequentially de-

composes the search of an optimal policy, it is not practical

because at each step we have to solve a functional optimiza-

tion problem (search the best .'t ; 
t /). However, we can

exploit the structure of the optimal policy obtained in Stage 2

to further simplify the dynamic program.

The structure derived in Stage 2 imposes the following

restriction on the maps 't and 
t .

8t; 't .xt / 2 fxt ; bg and yt ¤ b H) 
t .yt / D yt :

Thus, the map 't is equivalent to the silence set St defined as

St D fx 2 X W 't .x/ D bg

and the map 
t is equivalent to the estimate Ox�
t D gt .b/ cho-

sen when a blank is received. Using, this equivalence, we can

simplify the result of Proposition 1 as follows:

Proposition 2 Define a sequence fVt g of function recursively

as follows:

VT .…T / D min
.ST ; Ox�

T
/

n

EŒc.XT ; OXT ; YT / j …T �
o

(5)

and for t D T � 1; : : : ; 1

Vt .…t / D min
.St ; Oxt /

n

EŒc.Xt ; OXt ; Yt / C VtC1.…tC1/ j …t �
o

(6)

Let h�
t .�/ D .S�

t ; Ox�
t / denote the arg min at time t when

…t D � . Then, h� is an optimal coordination policy. Fur-

thermore,

f �
t .xt ; �t / D

(

b; if xt 2 S�
t .�t /

xt ; otherwiseI

g�
t .yt ; �t / D

(

Ox�
t .�t /; if yt D b;

yt ; otherwiseI

is an optimal transmission and estimation policy for the orig-

inal system.

In the above proposition, the expected instantaneous cost is

given by

E

h

c.Xt ; OXt ; Yt / j …t ; St ; Ox�
t

i

D p� � .jX j � jSt j/

C � �
X

x2St

d.x; Ox�
t / � …t .x/=…t .St /:

The above dynamic program can be solved using numerical

methods for solving POMDPs [11, 12].
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